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Abstract. We investigate mathematical models for the dynamics between tu-
mor cells, immune-effector cells, and cytokine interleukin-2 (IL-2). To better
determine under what circumstances the tumor can be eliminated, we im-
plement optimal control theory. We design two control functionals, the first
functional having one control and the second having two controls, to maximize
the effector cells and interleukin-2 concentration and to minimize the tumor
cells. Next, we show that bang-bang optimal controls exist for each problem.
Then, we characterize our optimal controls in terms of the solutions to the
optimality system, which is the state system coupled with the adjoint system.
Finally, we analyze the various optimal controls and optimality systems using
numerical techniques.

1. Introduction. According to the American Cancer Society, the number of new
cancer cases in 2003 was estimated to be about 1,334,100. Since 1990, there have
been over 17 million new cases. Deaths from cancer in 2003 will total approximately
556,500[14]. Cancer accounts for one in four deaths in the United States. Surgery,
chemotherapy, and radiation therapy are most commonly used to treat cancer.
Recently, immunotherapy has become a viable treatment option.

Immunotherapy refers to the use of natural and synthetic substances to stimu-
late the immune response. This involves stimulating the immune system to work
harder or using an outside source of cells, such as synthesized immune system pro-
teins. Immunological therapies include the use of antigen and nonantigen specific
agents such as cytokines. Cytokines are hormones produced in the immune sys-
tem that regulate the growth and activity of other immune system cells and blood
cells. Cytokines alone can give the immune system a boost or given with other im-
munotherapies they can be used as adjuvants[15]. Cytokines have been used to treat
melanoma, leukemia, lymphoma, neuroblastoma, Kaposi’s sarcoma, mesothelioma,
brain cancer, cancer of the kidney, and cancer of the cervix.

Interleukin-2 (IL-2) is a cytokine that was approved by the FDA in 1992 for
treatment of metastatic renal cell (kidney) cancer. IL-2 became the first cytokine
approved for use alone in treating advanced cancer. Since that time, it has also
been approved to treat people with metastatic melanoma. IL-2 can be used as a
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single-drug treatment for these cancers, or it may be combined with other forms of
immunotherapy, such as vaccines. IL-2 helps immune system cells reproduce more
rapidly once they are in the patient. The use of IL-2 together with chemotherapy
or with other cytokines (such as interferon-alpha) may increase their effectiveness
against some cancers, but the side effects of the combined treatment are also in-
creased.

Some theoretical studies and mathematical works have been conducted to inves-
tigate this method of cancer treatment. For information on T cell sensitivity, see
Chan, George, and Stark [10]. For other models, see Panetta and Kirschner [7];
Swan [12], [13]; DePillis and Radunskaya [2]; and Murray [8], [9]. Also, see Fister
and Panetta [3], [4] for optimal control applied to cancer strategies. We apply the
method of optimal control theory to address this topic. We discuss a system of
differential equations that model tumor-immune dynamics (section 2). In section
3, parameter identification is briefly discussed. We then analyze the existence and
characterization of the optimal control in sections 4 and 5, respectively. In section
6, numerical results are given.

2. The models. We analyze the model originally discussed in Panetta and Kirschner
[7]. We define three populations for each model. These include x(t), the activated
immune system cells, or effector cells; y(t), the tumor cells; z(t), the concentration
of IL-2 in the single tumor-site compartment we are modeling. Our first model has
the form

dx

dt
= cy − µ2x +

p1xz

g1 + z,
(1)

dy

dt
= r2y(1− by)− axy

g2 + y,
(2)

dz

dt
=

p2xy

g3 + y
− µ3z + v(t)s2. (3)

Our second model has the form

dx

dt
= cy − µ2x +

p1xz

g1 + z
+ u(t)s1, (4)

dy

dt
= r2y(1− by)− axy

g2 + y,
(5)

dz

dt
=

p2xy

g3 + y
− µ3z + v(t)s2, (6)

where u(t) and v(t) are controls. Both models have normalized initial conditions,
x(0) = 1, y(0) = 1, and z(0) = 1.

The parameters are all considered positive constants. The model terms are
described as follows for equations (4)–(6) and similarly in equations (1)–(3). Our
first differential equation depicting the rate of change for the effector-cell population
consists of a recruitment term due to the presence of the tumor where c models
the antigenicity of the tumor. The second term represents the natural death of the
effector cells at a rate of µ2. Our third term is of the Michaelis-Menton form to
indicate the saturated effects of the immune response, whereby effector cells are
stimulated by IL-2. The final term in this equation involves the strength of the
treatment, s1, and the control, u(t), that represents an external source of effector
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cells. The terms, s1 and s2, are found to be critical parameters in [7]. They are the
main factors in determining the stability properties of the effector and cancer cells.
To model the rate of change of tumor cells, equation (5) includes a logistic term.
The loss of tumor cells is represented by a Michaelis-Menton term to indicate the
limited interaction between the tumor and effector cells. Equation (6) gives the
rate of change for the concentration of IL-2. The IL-2 source is modeled by another
Michaelis-Menton term in which the tumor cells stimulate the interaction with the
effector cells to produce more IL-2. The next-to-last term represents the loss of these
cells at a rate of µ3. The final term in this equation involves the strength of the
treatment, s2. The units for the parameters are in days−1 except for g1, g2, g3, and
b, whose units are volume. The functions u(t) and v(t) are the controls describing
the percentage of adoptive cellular immunotherapy (ACI) given. We have two
controls, because ACI has two approaches [7]. In the lymphokine-activated killer
cell therapy, the cells are derived from the in vitro combination with IL-2. These
are then injected back at the cancer site and are thought to mainly aid the effector
cells. We refer to this control as u(t). In the second approach of tumor infiltrating
lymphocyte therapy, the cells are derived from the lymphocytes recovered from
the tumors. They are combined with IL-2. We have included the v(t) control to
represent the inclusion of IL-2 that is cultured in vitro with the lymphocytes. This
directly increases the rate of change of the IL-2 population while having an indirect
effect on the immune system cells, x(t).

We choose as our control class piecewise continuous functions defined for all t such
that 0 ≤ u(t), v(t) ≤ 1, where u(t), v(t) = 1 represents maximal immunotherapy
and u(t), v(t) = 0 represents no immunotherapy. Thus, we depict the class of
admissible controls as

U1(t) = {v(t) piecewise continuous|0 ≤ v(t) ≤ 1, ∀t ∈ [0, T ]},
U2(t) = {u(t), v(t) piecewise continuous|0 ≤ u(t), v(t) ≤ 1, ∀t ∈ [0, T ]}.

Next, we define the objective functionals. We desire to maximize the effects of
the immunotherapy while minimizing the cost of the control. Therefore, we define
the objective functionals as

J1(v) =
∫ T

0

[x(t)− y(t) + z(t)−B(v(t))]dt, (7)

J2(u, v) =
∫ T

0

[x(t)− y(t) + z(t)−B1(u(t))−B2(v(t))]dt. (8)

Here we are maximizing the amount of effector and interleukin-2 cells and min-
imizing the number of tumor cells and the cost of the controls. B, B1, and B2 are
weight factors that represent a patient’s level of acceptance of the treatment. The
goal is to characterize the optimal controls u* and v* satisfying

max
0≤u≤1

J1(v) = J1(v∗),

max
0≤u,v≤1

J2(u, v) = J2(u∗, v∗).

As a remark, if s1 = 0 and B1 = 0 in J2(u, v), then the second model becomes the
first model associated with J1(v). Throughout this paper, most of the analysis is
completed for the first model so that the proofs are more insightful.
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3. Parameter estimation. The basic model parameters are obtained from Panetta
and Kirschner [7] and are given in the following table.

Table 1. Table 1: Model parameters

units = days−1 units = days−1 units = volume
0 ≤ c ≤ 0.05 r2 = 0.18 g1 = 2× 107

µ2 = 0.03 µ3 = 10 g2 = 1× 105

p1 = 0.1245 p2 = 5 g3 = 1× 103

a = 1 b = 1× 10−9

Values that were most appropriate for these models were chosen. Since no pre-
vious study had investigated values for rate constants in equation (6), these values
were determined by current medical literature and sensitivity analyses found in [7].
For instance, a wide range of values for c are explored, because the antigenicity
of the tumor varies between patient cases. Large c values represent tumor cells
that present a well-recognized antigen while small values represent tumor cells that
present a weak antigen.

4. Existence of optimal control. The existence of an optimal control for the
state system (1)–(3) associated with J1(v) is analyzed. The existence of an optimal
control can be determined from the Filippov-Cesari theorem ([11], p. 132, Theorem
8).

For the theorem, the following notation is used. Here,

~K =




x
y
z




and

N( ~K,U1, t) = {x(t)− y(t) + z(t)−B(v(t)) + γ, cy − µ2x +
p1xz

g1 + z
,

r2y(1 − by)− axy

g2 + y
,

p2xy

g3 + y
− µ3z + v(t)s2},

where γ ≤ 0 and v ∈ U1.
Theorem 1. Consider the objective functional, J1(v) subject to equations (1)–(3).

Assume that
• there exists an admissible pair ( ~K, v(t));
• N( ~K,U1, t) is convex in U1 for each ( ~K, t);
• U1 is closed and bounded;
• there exists a number θ such that ‖ ~K‖ ≤ θ ∀t ∈ [t0, t1] and all admissible

pairs ( ~K, v(t)).

Then there exists an optimal control pair ( ~K∗, v∗) that maximizes J1(v).
Proof. An admissible pair ( ~K, v(t)) is needed to obtain the existence of an optimal
control. From the discussion of existence in Burden et al. [1], we know that an
admissible pair exists. Second, we need N( ~K, U1, t) to be convex in U1 for each
( ~K, t).
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We define

w1 = (x−y+z−Bv1+γ1, cy−µ2x+
p1xz

g1 + z
, r2y(1−by)− axy

g2 + y
,

p2xy

g3 + y
−µ3z+v1s2)

for some γ1 ≤ 0 and v1 ∈ U1,

w2 = (x−y+z−Bu2+γ2, cy−µ2x+
p1xz

g1 + z
, r2y(1−by)− axy

g2 + y
,

p2xy

g3 + y
−µ3z+v2s2)

for some γ2 ≤ 0 and v2 ∈ U, and w3 = (λ)(w1) + (1− λ)w2, where λ ∈ [0, 1].
We need to prove that

w3 = (λ(w1) + (1− λ)w2) ∈ (N( ~K, U, t)).

To do this, we let

z1 = (λ)(x− y + z −Bv1 + γ1) + (1− λ)(x− y + z −Bv2 + γ2)
= x− y + z −B((1− λ)v2 + λ(v1)) + (λ)(γ1) + (1− λ)(γ2),

and define

γ3 = z1 − (x− y + z) + Bv3,

where v3 = (1− λ)(v2) + λv1.
Then γ3 = λγ1 + (1− λ)γ2 ≤ 0, since γ1, γ2 ≤ 0 and λ ∈ [0, 1].
We see that

z2 = λ(cy − µ2x +
p1xz

g1 + z
) + (1− λ)(cy − µ2x +

p1xz

g1 + z
)

= cy − µ2x +
p1xz

g1 + z
,

z3 = λ(r2y(1− by)− axy

g2 + y
) + (1− λ)(r2y(1− by)− axy

g2 + y
)

= r2y(1− by)− axy

g2 + y,

and

z4 = λ(
p2xy

g3 + y
− µ3z + v1s2) + (1− λ)(

p2xy

g3 + y
− µ3z + v2s2)

=
p2xy

g3 + y
− µ3z + v3s2.

Combining this information, we find a v3 ∈ [0, 1] and γ3 ≤ 0 such that

(λ)w1 + (1− λ)w2 = (x− y + z −Bv3 + γ3,

cy − µ2x +
p1xz

g1 + z
, r2y(1− by)− axy

g2 + y
,

p2xy

g3 + y
− µ3z + v3s2).

Hence, ((λ)w1 + (1− λ)w2) ∈ N( ~K,U1, t). Thus, N( ~K, U1, t) is convex in U1.
A third requirement for the existence of an optimal control is that U is closed

and bounded, which it is by definition. Finally, there exists a number θ such that
‖ ~K‖ ≤ Θ for all t ∈ [t0, t1]and all admissible pairs ( ~K, v(t)). See Burden et al. [1]
for a boundedness argument. 2

A similar argument holds for the existence of an optimal control pair associated
with J2(u, v) subject to equations (4)–(6).
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5. Characterization of optimal control. Since an optimal control exists for
maximizing the functionals in (7) and (8) subject to equations (1)–(3) and (4)–(6),
then a version of Pontryagin’s maximum principle is used to derive necessary con-
ditions for the optimal control. See Kamien and Schwartz [6]. We analyze the
characterization for an optimal control associated with J1(v).

For the characterization, we define the Hamiltonian associated with J1(v) and
equations (1)–(3) as

H = x− y + z + λ1(cy − µ2x +
p1xz

g1 + z
) + λ2(r2y(1− by)− axy

g2 + y
)

+ λ3(
p2xy

g3 + y
− µ3z) + (λ3s2 −B)v.

Theorem 2. Given an optimal control v∗ and solutions of the corresponding state
system, there exist adjoint variables λi for i = 1, 2, 3 satisfying the following:

dλ1

dt
=

−∂H

∂x
= −[1− λ1µ2 +

λ1p1z

g1 + z
− λ2ay

g2 + y
+

λ3p2y

g3 + y
],

dλ2

dt
=

−∂H

∂y
= −[−1 + λ1c + λ2r2 − 2λ2r2by − g2λ2ax

(g2 + y)2
+

λ3g3p2x

(g3 + y)2
],

dλ3

dt
=

−∂H

∂z
= −[1 +

λ1g1p1x

(g1 + z)2
− λ3µ3],

where λi(T ) = 0 for i = 1, 2, 3. Further, v∗ is represented by

v∗ =
{

1, if λ3s2 −B > 0,
0, if λ3s2 −B < 0.

Proof. From the Hamiltonian, the derivatives of the adjoints are easily deter-
mined. In addition, we see that

v∗(t) =





1, if λ3s2 −B > 0,
0, if λ3s2 −B < 0,
singular, if λ3s2 −B = 0.

at the optimal v∗. We next determine the representation of the control by excluding
the singular case.

We suppose the control is singular; that is, λ3s2−B = 0 on (t1, t2) ⊂ [0, T ].This
says that λ3 = B

s2
on this interval. If we take a time derivative of λ3s2−B = 0, we

obtain λ′3(t)s2 = 0 or λ′3 = 0. This means λ3(t) = C where C is a constant. Since
λ3(t) can be shown to be continuous on [0, T ] and λ3(T ) = 0, then λ3(t) = 0 on
any subset of [0, T ]. Yet, λ3 = B

s2
> 0. This is a contradiction to our assumption.

Consequently, the control is of bang-bang type; that is,

v∗(t) =
{

1, if λ3s2 −B > 0,
0, if λ3s2 −B < 0. 2

Similarly, the necessary conditions for J2(u, v) give

λ′1 =
−∂H

∂x
= −[1− λ1µ2 +

λ1p1z

g1 + z
− λ2ay

g2 + y
+

λ3p2y

g3 + y
],

λ′2 =
−∂H

∂y
= −[−1 + λ1c + λ2r2 − 2λ2r2by − g2λ2ax

(g2 + y)2
+

λ3g3p2x

(g3 + y)2
],

λ′3 =
−∂H

∂z
= −[1 +

λ1g1p1x

(g1 + z)2
− λ3µ3],
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where

u∗(t) =
{

1, if λ1s1 −B1 > 0,
0, if λ1s1 −B1 < 0,

and

v∗(t) =
{

1, if λ3s2 −B2 > 0,
0, if λ3s2 −B2 < 0.

For the case of two controls, we note that if it is assumed that both controls are
singular on the same or even distinct subsets of [0, T ] and take time derivatives,
then λ1(t) = 0 and λ3(t) = 0 on [0, T ], using the continuity of λ1(t) and λ3(t).
This contradicts the facts that λ1 = B1

s1
and λ3 = B2

s2
. Consequently, both controls

cannot be singular. If it is assumed that one is singular and the other is bang-bang,
then a contradiction similar to the above is found. Therefore, both controls are
bang-bang.

We can establish uniqueness of the solution to the state system and its associated
adjoint system. Note that the state system and its associated adjoint system are
referred to as the optimality system. Thus, we obtain the uniqueness of the optimal
control for each system associated with its respective objective functional.

Theorem 3. For T sufficiently small, the solution to each optimality system is
unique.

In [1] and [5], similar proofs are given for the uniqueness. We note that the
condition that T be sufficiently small is needed because the state system is moving
forward in time and the adjoint system is moving backward in time.

6. Numerical results. In this section, the graphical results are analyzed. To solve
each optimality system, first an initial guess is made for the control(s). Then the
state system is solved forward in time while the adjoint system is solved backward
in time. The controls are then updated. This process continues until the error in
the iterates is less than a prescribed epsilon.

Using the bifurcation analysis that Kirschner and Panetta [7] have provided, we
have chosen parameters that lie in stable or unstable regions. With these parame-
ters, we determine the optimal control situation (i.e., the drug strategy) that devel-
ops. We also depict the evolution of the cancer cells, effector cells, and interleukin-2
cells within the context of each control strategy. We note that we include the graphs
of the adjoints that are directly related to the controls. As the adjoint moves above
or below 1, the control changes from off to on or vice versa.

Figure 1 represents the results for the J1(v) objective functional associated with
equations (1)–(3). The values for s2 and c are in the stable range per Kirschner
and Panetta [7]. The cancer cells increase rapidly around day 100. The effector
cells and interleukin-2 cells do not appear to respond at a level that has any affect
on the cancer cells. The cancer continues to grow at the end of the time interval,
with the effector and interleukin-2 cells being virtually nonexistent in comparison.
About day 180, the control switches on, but the cancer has been growing since
about day 100. The control stays on until about day 340, at which time the cancer
has reached a plateau.
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Figure 1. s2 = 100, 000, 000, B = 100, 000, 000, c = .000085.
This represents the results for the J1(v) functional subject to equa-
tions (1)–(3) with the parameter s2 chosen so that the cancer cells
lie in a region of stability.

Figure 2 represents the results for the J1(v) objective functional also associated
with equations (1)–(3). The s2 value in this case is not in the stable range. The
cancer grows uncontrolled, even though the drug is given at its maximum level for
the entire period. The effector cells and interleukin-2 cells are unable to affect the
cancer cell growth. The cancer continues to grow at the end of the time interval.

Figures 1 and 2 have the same dynamics for the effector, cancer, and IL-2 cells.
However, the drug strategy is different. Less therapy is needed in Figure 1. But
sadly, the cancer cells in both situations overpower the treatment efforts.
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Figure 2. s2 = 10, 000, B = 5, c = .000085. The represents the
results for J1(v) functional subject to equations (1)–(3) with the
s2 parameter lying in a region of instability.

Figure 3 represents the results for the J2(u, v) objective functional associated
with equations (4)–(6). The values for s1, s2, and c are in the cancer-free state
range. The cancer cells surge around day 50. The effector and interleukin-2 cells
have a delayed response. Around day 90 when the cancer cells are eliminated, they
are at their highest concentration. The second surge of cancer cell growth occurs
around day 225. Again, the effector and interleukin-2 respond, and the cancer is
reduced to undetectable levels at day 270. The cancer is not growing at the end of
the time interval. Control 1(u) responds to the surges of cancer growth by switching
on. Control 2(v) is always on at the highest level. The controls remain on until the
end of the time interval at which time the cancer cells are virtually nonexistent.
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Figure 3. s1 = 500,s2 = 70, 000, 000, B1 = 50,B2 =
10, 000, 000,c = .025. This represents the results for the J2(u, v)
objective functional associated with equations (4)–(6). The values
for s1,s2 and c are in the cancer free state region.

Figure 4 represents the results for the J2(u, v) objective functional associated
with equations (4)–(6). The s1 value is not in the cancer-free state range, although
at the end of the time interval, the cancer cells are not present. Each time the cancer
cells increase, the effector cells and interleukin-2 cells also increase in response. In
this case, Control 1(u) is always off and Control 2(v) is always on.

Figures 3 and 4 are similar except in the form of the controls. In Figure 3, a
combination of the two strategies is employed, whereas in Figure 4 only one drug
protocol is used. Depending on the side-effects of these treatments to the patient,
the drug program that minimizes those effects should be chosen, because in both
cases the cancer resurges but at a lower maximum level than before. This cyclic
nature of the cancer resurgence is present even if the time period is increased. As
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Figure 4. s1 = .000000025,s2 = 70, 000, 000, B1 = 1,B2 = 5,c =
.025. This figure represents the results for the J2(u, v) objective
functional associated with equations (4)–(6). The s1 value is not
in the cancer free state region.

the time period increases to two years, the maximum level at which the cancer
reappears has been reduced by two orders of magnitude.

7. Conclusion. Numerical results are obtained for the two optimality systems.
Bang-bang optimal controls are found to exist for each problem. The effects of
altering the strength of the treatment(s1 and s2) and also the antigenicity of the
tumor(c) are seen in the controls’ response. We observe the growth of cancer cells
and the response of the interleukin-2 and effector cells as the controls changed from
maximum level to minimum level and vice versa. The results show that cancer cells
can have a cyclic nature (see Figs. 3 and 4) even when the drug therapy is at a
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maximum level. Thus, even though the tumor burden in the objective functional
is minimized, the cancer cells are reduced but may not be totally eliminated from
the system.

We observe qualitatively different treatment strategies based on the use of dif-
ferent objective functionals. These differences show the importance of defining an
objective functional that most accurately reflects the toxicities of a particular drug
along with the objective of the treatment strategy. In future work, different objec-
tive functionals will be evaluated. A next step will include the study of optimal
control applied to immunotherapy and vaccination strategies of ordinary differential
equation models and age-dependent partial differential equation models.
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