Research article

New identities involving Hardy sums $S_3(h, k)$ and general Kloosterman sums

  • Received: 26 May 2020 Accepted: 23 November 2020 Published: 25 November 2020
  • MSC : 11F20, 11L05

  • The main purpose of this paper is to obtain some exact computational formulas or upper bounds for hybrid mean value involving Hardy sums $S_{3}(h, p)$ and general Kloosterman sums $K(r, l, \lambda; p)$. By applying the properties of Gauss sums and the mean value theorems of Dirichlet $L$-function, we derive some new identities. As the special cases, we also deduce some exact computational formulas for hybrid mean value involving $S_{3}(h, p)$ and classical Kloosterman sums $K(n, p)$.

    Citation: Wenjia Guo, Yuankui Ma, Tianping Zhang. New identities involving Hardy sums $S_3(h, k)$ and general Kloosterman sums[J]. AIMS Mathematics, 2021, 6(2): 1596-1606. doi: 10.3934/math.2021095

    Related Papers:

  • The main purpose of this paper is to obtain some exact computational formulas or upper bounds for hybrid mean value involving Hardy sums $S_{3}(h, p)$ and general Kloosterman sums $K(r, l, \lambda; p)$. By applying the properties of Gauss sums and the mean value theorems of Dirichlet $L$-function, we derive some new identities. As the special cases, we also deduce some exact computational formulas for hybrid mean value involving $S_{3}(h, p)$ and classical Kloosterman sums $K(n, p)$.


    加载中


    [1] T. M. Apostol, Modular function and Dirichlet series in number theory, New York: Springer-Verlag, 1976.
    [2] L. Carlitz, The reciprocity theorem of Dedekind sums, Pacific J. Math., 3 (1953), 513-522. doi: 10.2140/pjm.1953.3.513
    [3] J. B. Conrey, E. Fransen, R. Klein, C. Scott, Mean values of Dedekind sums, J. Number Theory, 56 (1996), 214-226. doi: 10.1006/jnth.1996.0014
    [4] X. L. He, W. P. Zhang, On the mean value of the Dedekind sum with the weight of Hurwitz zeta-function, J. Math. Anal. Appl., 240 (1999), 505-517. doi: 10.1006/jmaa.1999.6607
    [5] B. C. Berndt, L. A. Goldberg, Analytic properties of arithmetic sums arising in the theory of the classical theta-function, SIAM J. Math. Anal., 15 (1984), 143-150. doi: 10.1137/0515011
    [6] H. Zhang, W. P. Zhang, On the identity involving certain Hardy sums and Kloosterman sums, Inequal. Appl., 52 (2014), 1-9.
    [7] H. F. Zhang, T. P. Zhang, Some identities involving certain Hardy sums and general Kloosterman sums, Mathematics, 8 (2020), 95. doi: 10.3390/math8010095
    [8] B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan, Reine Angew. Math., 303-304 (1978), 332-365.
    [9] L. A. Goldberg, Transformations of theta-functions and analogues of Dedekind sums, Ph.D. thesis, University of Illinois, Urbana, 1981.
    [10] R. Sitaramachandrarao, Dedekind and Hardy sums, Acta Arith., 48 (1978), 325-340.
    [11] W. P. Zhang, On the mean values of Dedekind sums, J. Theor. Nombr. Bordx., 8 (1996), 429-442. doi: 10.5802/jtnb.179
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3306) PDF downloads(153) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog