Research article

Inertial projection methods for solving general quasi-variational inequalities

  • Received: 24 July 2020 Accepted: 02 November 2020 Published: 09 November 2020
  • MSC : 49J40, 90C33

  • In this paper, we consider a new class of quasi-variational inequalities, which is called the general quasi-variational inequality. Using the projection operator technique, we establish the equivalence between the general quasi-variational inequalities and the fixed point problems. We use this alternate formulation to propose some new inertial iterative schemes for solving the general quasi-variational inequalities. The convergence criteria of the new inertial projection methods under some appropriate conditions is investigated. Since the general quasi-variational inequalities include the quasi-variational inequalities, variational inequalities, complementarity problems and the related optimization problems as special cases, our results continue to hold for these problems. It is an interesting problem to compare the efficiency of the proposed methods with other known methods.

    Citation: Saudia Jabeen, Bandar Bin-Mohsin, Muhammad Aslam Noor, Khalida Inayat Noor. Inertial projection methods for solving general quasi-variational inequalities[J]. AIMS Mathematics, 2021, 6(2): 1075-1086. doi: 10.3934/math.2021064

    Related Papers:

  • In this paper, we consider a new class of quasi-variational inequalities, which is called the general quasi-variational inequality. Using the projection operator technique, we establish the equivalence between the general quasi-variational inequalities and the fixed point problems. We use this alternate formulation to propose some new inertial iterative schemes for solving the general quasi-variational inequalities. The convergence criteria of the new inertial projection methods under some appropriate conditions is investigated. Since the general quasi-variational inequalities include the quasi-variational inequalities, variational inequalities, complementarity problems and the related optimization problems as special cases, our results continue to hold for these problems. It is an interesting problem to compare the efficiency of the proposed methods with other known methods.


    加载中


    [1] F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 14 (2003), 773-782.
    [2] A. S. Antipin, Minimization of convex functions on convex sets by means of differential equations, Diff. Equat., 30 (2003), 1365-1357.
    [3] F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Var. Anal., 9 (2001), 3-11. doi: 10.1023/A:1011253113155
    [4] H. Attouch, M. O. Czarnecki, Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria, J. Differ. Equations, 179 (2002), 278-310. doi: 10.1006/jdeq.2001.4034
    [5] H. Attouch, X. Goudon, P. Redont, The heavy ball with friction. I. The continuous dynamical system, Commun. Contemp. Math., 2 (2000), 1-34. doi: 10.1142/S0219199700000025
    [6] A. S. Antipin, M. Jacimovic, N. Mijajlovic, Extragradient method for solving quasivariational inequalities, Optimization, 67 (2018), 103-112. doi: 10.1080/02331934.2017.1384477
    [7] A. Bensoussan, J. L. Lions, Application des inequalities variationnelles en control eten stochastique, Paris: Dunod, 1978.
    [8] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202. doi: 10.1137/080716542
    [9] D. Chan, J. Pang, The generalized quasi-variational inequality problem, Math. Oper. Res., 7 (1982), 211-222. doi: 10.1287/moor.7.2.211
    [10] G. Cristescu, L. Lupsa, Non-connected convexities and applications, Dordrecht: Kluwer Academic Publisher, 2002.
    [11] G. Cristescu, M. Gaianu, Shape properties of Noors convex sets, In: Proceed. Twelfth Symposium of Mathematics and its Applications, Timisoara, 2009, 1-13.
    [12] M. Jacimovic, N. Mijajlovic, On a continuous gradient-type method for solving quasi variational inequalities, Proc. Mont. Acad. Sci Arts., 19 (2011), 16-27.
    [13] S. Jabeen, M. A. Noor, K. I. Noor, Inertial iterative methods for general quasi variational inequalities and dynamical systems, J. Math. Anal., 11 (2020), 14-29.
    [14] S. Jabeen, M. A. Noor, K. I. Noor, Some new inertial projection methods for quasi variational Inequalities, Appl. Math. E Notes., 21 (2021), In press.
    [15] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Philadelphia: SIAM, 2000.
    [16] Z. Kan, F. Li, H. Peng, B. Chen, X. G. Song, Sliding cable modeling: A nonlinear complementarity function based framework, Mech. Syst. Signal Pr., 146 (2021), 1-20.
    [17] J. L. Lions, G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math., 20 (1967), 493-512.
    [18] P. E. Mainge, Regularized and inertial algorithms for common fixed points of nonlinear operators, J. Math. Anal. Appl., 344 (2008), 876-887. doi: 10.1016/j.jmaa.2008.03.028
    [19] N. Mijajlovic, J. Milojica, M. A. Noor, Gradient-type projection methods for quasi variational inequalities, Optim. Lett., 13 (2019), 1885-1896. doi: 10.1007/s11590-018-1323-1
    [20] M. A. Noor, An iterative scheme for class of quasi variational inequalities, J. Math. Anal. Appl., 110 (1985), 463-468. doi: 10.1016/0022-247X(85)90308-7
    [21] M. A. Noor, General variational inequalities, Appl. Math. Lett., 1 (1988), 119-122. doi: 10.1016/0893-9659(88)90054-7
    [22] M. A. Noor, Quasi variational inequalities, Appl. Math. Lett., 1 (1988), 367-370. doi: 10.1016/0893-9659(88)90152-8
    [23] M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput., 152 (2004), 199-277.
    [24] M. A. Noor, Differentiable non-convex functions and general variational inequalities, Appl. Math. Comput., 199 (2008), 623-630.
    [25] M. A. Noor, On a class of general variational inequalities, J. Adv. Math. Stud., 1 (2008), 31-42.
    [26] M. A. Noor, On general Quasi variational inequalities, J. King Saud Univ. Sci., 24 (2012), 81-88. doi: 10.1016/j.jksus.2010.07.002
    [27] M. A. Noor, K. I. Noor, M. Th. Rassias, New trends in general variational inequalities, Acta Appl. Math., 170 (2020), 981-1064.
    [28] M. A. Noor, W. Oettli, On general nonlinear complementarity problems and quasi equilibria, Le Mathematiche, 49 (1994), 313-331.
    [29] M. A. Noor, K. I. Noor, T. M. Rassias, Some aspects of variational inequalities, J. Comput. Appl. Math., 47 (1993), 285-312. doi: 10.1016/0377-0427(93)90058-J
    [30] M. A. Noor, K. I. Noor, A. Bnouhachem, On unified implicit method for variational inequalities, J. Comput. Appl. Math., 249 (2013), 69-73. doi: 10.1016/j.cam.2013.02.011
    [31] M. A. Noor, K. I. Noor, T. M. Rassias, Iterative methods for variational inequalities, In Differential and integral inequalities, Springer, (2019), 603-618.
    [32] H. Peng, F. Li, J. Liu, Z. Ju, A sympletic instaneous optimal control for robot trajectory tracking with differential-algebraic equation models, IEEE T. Ind. Eclect., 67 (2020), 3819-3829. doi: 10.1109/TIE.2019.2916390
    [33] B. T. Polyak, Some methods of speeding up the convergence of iterative methods, Zh. Vychisl. Mat. Mat. Fiz., 4 (1964), 791-803.
    [34] N. Song, H. Peng, X. Xu, G. Wang, Modeling and simulation of a planar rigid multibody system with multiple revolute clearance joints based on variational inequality, Mech. Mach. Theory, 154 (2020), 104053. doi: 10.1016/j.mechmachtheory.2020.104053
    [35] G. Stampacchia, Formes bilineaires coercivites sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413-4416.
    [36] Y. Shehu, A. Gibali, S. Sagratella, Inertial projection-type method for solving quasi variational inequalities in real Hilbert space, J. Optim. Theory Appl., 184 (2019), 877-894. https://doi.org/10.1007/s10957-019-01616-6.
    [37] H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240-256. doi: 10.1112/S0024610702003332
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3900) PDF downloads(272) Cited by(12)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog