Research article

The global classical solution to compressible Euler system with velocity alignment

  • Received: 29 June 2020 Accepted: 06 August 2020 Published: 28 August 2020
  • MSC : 35L65, 35Q70

  • In this paper, the compressible Euler system with velocity alignment and damping is considered, where the influence matrix of velocity alignment is not positive definite. Sound speed is used to reformulate the system into symmetric hyperbolic type. The global existence and uniqueness of smooth solution for small initial data is provided.

    Citation: Lining Tong, Li Chen, Simone Göttlich, Shu Wang. The global classical solution to compressible Euler system with velocity alignment[J]. AIMS Mathematics, 2020, 5(6): 6673-6692. doi: 10.3934/math.2020429

    Related Papers:

  • In this paper, the compressible Euler system with velocity alignment and damping is considered, where the influence matrix of velocity alignment is not positive definite. Sound speed is used to reformulate the system into symmetric hyperbolic type. The global existence and uniqueness of smooth solution for small initial data is provided.


    加载中


    [1] S. Benzoni-Gavage, D. Serre, Multi-Dimensional Hyperbolic Partial Differential Equations: First-Order Systems and Applications, Oxford University Press, 2007.
    [2] J. A. Carrillo, Y. P. Choi, E. Tadmor, et al. Critical thresholds in 1D Euler equations with non-local forces, Math. Mod. Meth. Appl. S., 26 (2016), 185-206. doi: 10.1142/S0218202516500068
    [3] J. A. Carrillo, Y. P. Choi, E. Zatorska, On the pressureless damped Euler-Poisson equations with quadratic confinement: Critical thresholds and large-time behavior, Math. Mod. Meth. Appl. S., 26 (2016), 2311-2340. doi: 10.1142/S0218202516500548
    [4] J. A. Carrillo, E. Feireisl, P. Gwiazda, et al. Weak solutions for Euler systems with non-local interactions, J. Lond. Math. Soc., 95 (2017), 705-724. doi: 10.1112/jlms.12027
    [5] J. A. Carrillo, A. Wróblewska-Kamińska, E. Zatorska, On long-time asymptotics for viscous hydrodynamic models of collective behavior with damping and nonlocal interactions, Math. Mod. Meth. Appl. S., 29 (2019), 31-63. doi: 10.1142/S0218202519500027
    [6] J. Che, L. Chen, S. Göttlich, et al. Existence of a classical solution to complex material flow problems, Math. Method. Appl. Sci., 39 (2016), 4069-4081. doi: 10.1002/mma.3848
    [7] Y. P. Choi, The global Cauchy problem for compressible Euler equations with a nonlocal dissipation, Math. Mod. Meth. Appl. S., 29 (2019), 185-207. doi: 10.1142/S0218202519500064
    [8] E. DiBenedetto, Real Analysis, Birkhäuser, 2002.
    [9] T. Do, A. Kiselev, L. Ryzhik, et al. Global regularity for the fractional Euler alignment system, Arch. Ration. Mech. Anal., 228 (2018), 1-37. doi: 10.1007/s00205-017-1184-2
    [10] I. Gasser, L. Hsiao, H. Li, Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors, J. Differ. Equations, 192 (2003), 326-335. doi: 10.1016/S0022-0396(03)00122-0
    [11] S. Göttlich, A. Klar, S. Tiwari, Complex material flow problems: A multi-scale model hierarchy and particle methods, J. Eng. Math., 92 (2015), 15-29. doi: 10.1007/s10665-014-9767-5
    [12] S. Y. Ha, F. Huang, Y. Wang, A global unique solvability of entropic weak solution to the one-dimensional pressureless Euler system with a flocking dissipation, J. Differ. Equations, 257 (2014), 1333-1371. doi: 10.1016/j.jde.2014.05.007
    [13] S. Y. Ha, M. J. Kang, B. Kwon, A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid, Math. Mod. Meth. Appl. S., 24 (2014), 2311-2359. doi: 10.1142/S0218202514500225
    [14] S. Y. Ha, M. J. Kang, B. Kwon, Emergent Dynamics for the Hydrodynamic Cucker-Smale System in a Moving Domain, SIAM J. Math. Anal., 47 (2015), 3813-3831. doi: 10.1137/140984403
    [15] L. Hsiao, T. P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Commun. Math. Phys., 143 (1992), 599-605. doi: 10.1007/BF02099268
    [16] F. Huang, P. Marcati, R. Pan, Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 176 (2005), 1-24. doi: 10.1007/s00205-004-0349-y
    [17] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975), 181-205. doi: 10.1007/BF00280740
    [18] A. Kiselev, C. Tan, Global regularity for 1D Eulerian dynamics with singular interaction forces, SIAM J. Math. Anal., 50 (2018), 6208-6229. doi: 10.1137/17M1141515
    [19] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, In: Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, Society for Indus trial and Applied Mathematics, Philadelphia, 1973, 1-48.
    [20] E. H. Lieb, M. Loss, Analysis, American Mathematical Society, Providence, 2001.
    [21] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, New York, 1984.
    [22] A. Majda, A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.
    [23] A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto U., 20 (1980), 67-104. doi: 10.1215/kjm/1250522322
    [24] T. C. Sideris, B. Thomases, D. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping, Commun. Part. Diff. Eq., 28 (2003), 795-816. doi: 10.1081/PDE-120020497
    [25] Z. Tan, Y. Wang, Global solution and large-time behavior of the 3D compressible Euler equations with damping, J. Differ. Equations, 254 (2013), 1686-1704. doi: 10.1016/j.jde.2012.10.026
    [26] W. Wang, T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions, J. Differ. Equations, 173 (2001), 410-450. doi: 10.1006/jdeq.2000.3937
    [27] T. Yang, C. Zhu, H. Zhao, Global smooth solutions for a class of quasilinear hyperbolic systems with dissipative terms, P. Roy. Soc. Edinb. A, 127 (1997), 1311-1324. doi: 10.1017/S0308210500027074
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3273) PDF downloads(105) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog