Research article

On the density of shapes in three-dimensional affine subdivision

  • Received: 03 April 2020 Accepted: 15 June 2020 Published: 22 June 2020
  • MSC : 51M20, 52B10

  • The affine subdivision of a simplex $\Delta$ is a certain collection of $(n+1)!$ smaller $n$-simplices whose union is $\Delta$. Barycentric subdivision is a well know example of affine subdivision(see). Richard Schwartz(2003) proved that the infinite process of iterated barycentric subdivision on a tetrahedron produces a dense set of shapes of smaller tetrahedra. We prove that the infinite iteration of several kinds of affine subdivision on a tetrahedron produce dense sets of shapes of smaller tetrahedra, respectively.

    Citation: Qianghua Luo, Jieyan Wang. On the density of shapes in three-dimensional affine subdivision[J]. AIMS Mathematics, 2020, 5(5): 5381-5388. doi: 10.3934/math.2020345

    Related Papers:

  • The affine subdivision of a simplex $\Delta$ is a certain collection of $(n+1)!$ smaller $n$-simplices whose union is $\Delta$. Barycentric subdivision is a well know example of affine subdivision(see). Richard Schwartz(2003) proved that the infinite process of iterated barycentric subdivision on a tetrahedron produces a dense set of shapes of smaller tetrahedra. We prove that the infinite iteration of several kinds of affine subdivision on a tetrahedron produce dense sets of shapes of smaller tetrahedra, respectively.


    加载中


    [1] José S. Andrade, H. J. Herrmann, R. F. S. Andrade, et al. Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs, Phys. Rev. Lett., 94 (2005), 018702.
    [2] I. Bárány, A. F. Beardon, T. K. Carne, Barycentric subdivision of triangles and semigroups of Möbius maps, Mathematika, 43 (1996), 165-171. doi: 10.1112/S0025579300011669
    [3] J. H. Conway, A. J. Jones, Trigonometric diophantine equations (on vanishing sums of roots of unity), Acta Arith., 30 (1976), 229-240. doi: 10.4064/aa-30-3-229-240
    [4] W. Fulton, J. Harris, Representation Theory, A First Course, Springer-Verlag, New York, 1991.
    [5] J. B. Liu, J. Zhao, Z. X. Zhu, On the number of spanning trees and normalized Laplacian of linear octagonal quadrilateral networks, Int. J. Quantum Chem., 119 (2019), e25971.
    [6] J. B. Liu, J. Zhao, Z. Cai, On the generalized adjacency, Laplacian and signless Laplacian spectra of the weighted edge corona networks, Physica A, 540 (2020), 123073.
    [7] J. B. Liu, J. Zhao, H. He, et al.Valency-based topological descriptors and structural property of the generalized sierpinski networks, J. Stat. Phys., 177 (2019), 1131-1147. doi: 10.1007/s10955-019-02412-2
    [8] A. A. Ordin, Generalized barycentric subdivision of triangle and semigroups of Möbius transfomations, Russ. Math. Surv., 55 (2000), 591-592. doi: 10.1070/RM2000v055n03ABEH000304
    [9] R. E. Schwartz, The density of shapes in three-dimensional barycentric subdivision, Discrete Comput. Geom., 30 (2003), 373-377. doi: 10.1007/s00454-003-2823-y
    [10] R. E. Schwartz, Affine subdivision, steerable semigroups, and sphere coverings, Pure Appl. Math. Q., 3 (2007), 897-926. doi: 10.4310/PAMQ.2007.v3.n4.a2
    [11] E. Spanier, Algebraic Topology, Springer-Verlag, New York, 1966.
    [12] J. P. Suarez, T. Moreno, The limit property for the interior solid angles of some refinement schemes for simplicial meshes, J. Comput. Appl. Math., 275 (2015), 135-138. doi: 10.1016/j.cam.2014.08.004
    [13] S. Wolfram, The Mathematica Book, 4 Eds., Cambridge University Press, Cambridge, 1999.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3185) PDF downloads(178) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog