Research article

Computing the conjugacy classes and character table of a non-split extension 26·(25:S6) from a split extension 26:(25:S6)

  • Received: 17 July 2019 Accepted: 04 February 2020 Published: 26 February 2020
  • MSC : 20C15, 20C40

  • In this paper, we will demonstrate how the character table of a sub-maximal subgroup $2^6{:}(2^5{:}S_6)$ of the sporadic simple group $Fi_{22}$ can be used to obtain the conjugacy classes and character table of a non-split extension of the form $2^6{{}^{\cdot}}(2^5{:}S_6)$, which sits maximal in the unique non-split extension $2^6{{}^{\cdot}}Sp_6(2)$.

    Citation: Abraham Love Prins. Computing the conjugacy classes and character table of a non-split extension 26·(25:S6) from a split extension 26:(25:S6)[J]. AIMS Mathematics, 2020, 5(3): 2113-2125. doi: 10.3934/math.2020140

    Related Papers:

  • In this paper, we will demonstrate how the character table of a sub-maximal subgroup $2^6{:}(2^5{:}S_6)$ of the sporadic simple group $Fi_{22}$ can be used to obtain the conjugacy classes and character table of a non-split extension of the form $2^6{{}^{\cdot}}(2^5{:}S_6)$, which sits maximal in the unique non-split extension $2^6{{}^{\cdot}}Sp_6(2)$.


    加载中


    [1] F. Ali and J. Moori, The Fischer-Clifford matrices of a maximal subgroup of Fi'24, Representation Theory of the American Mathematical Society, 7 (2003), 300-321. doi: 10.1090/S1088-4165-03-00175-4
    [2] A. B. M. Basheer and J. Moori,On the non-split extension group 26·Sp6(2), B. Iran. Math. Soc., 39 (2013), 1189-1212.
    [3] A. B. M. Basheer and J. Moori, A survey on Clifford-Fischer theory, London Mathematical Society Lecture Notes Series, 422 (2015), 160-172.
    [4] A. B. M. Basheer, Clifford-Fischer Theory Applied to Certain Groups Associated with Symplectic, Unitary and Thompson Groups, PhD Thesis, University of KwaZulu-Natal, Pietermaitzburg, 2012.
    [5] W. Bosma and J. J. Canon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, 1994.
    [6] J. H. Conway, R. T. Curtis, S. P. Norton, et al. Atlas of Finite Groups, Oxford University Press, Oxford, 1985.
    [7] U. Dempwolff, Extensions of elementary abelian groups of order 22n byS 2n(2) and the degree 2-cohomology of S2n(2), Illinois J. Math., 18 (1974), 451-468
    [8] B. Fischer, Clifford-matrices, Representation Theory of Finite Groups and Finite-Dimensional Algebras, Birkhauser, Basel, 1991.
    [9] R. L. Fray and A. L. Prins, On the inertia groups of the maximal subgroup 27:SP(6, 2) in Aut(Fi22), Quaest. Math., 38 (2015), 83-102.
    [10] D. Gorenstein, Finite Groups, Harper and Row Publishers, New York, 1968.
    [11] G. Karpilovsky, Group Representations: Introduction to Group Representations and Characters, North-Holland Mathematics Studies, 175 (1992), 1-13.
    [12] A. L. Prins and R. L. Monaledi, Fischer-Clifford Matrices and Character Table of the Maximal Subgroup of (29:L3(4)):2 of U6(2):2, International Journal of Mathematics and Mathematical Sciences, 2019 (2019), 1-17.
    [13] R. L. Monaledi, Character Tables of Some Selected Groups of Extension Type Using FischerClifford Matrices, M.Sc Thesis, University of the Western Cape, Bellville, 2015.
    [14] J. Moori, On certain groups associated with the smallest Fischer group, J. Lond. Math. Soc., 2 (1981), 61-67.
    [15] J. Moori, On the Groups G+ and $\overline{G}$ of the forms $2^{10}{:}M_{22}$ and $2^{10}{:}\overline{M}_{22}$, PhD thesis, University of Birmingham, 1975.
    [16] J. Moori and Z. E. Mpono, The Fischer-Clifford matrices of the group 26:SP6(2), Quaest. Math., 22 (1999), 257-298
    [17] J. Moori and T. T. Seretlo, On 2 non-split extensions groups associated with HS and HS:2, Turkish J. Math., 38 (2014), 60-78.
    [18] J. Moori and T. T. Seretlo, On Fischer-Clifford matrices of a maximal subgroup of the Lyons group Ly, B. Iran. Math. Soc., 39 (2013), 1037-1052.
    [19] A. L. Prins, The character table of an involution centralizer in the Dempwolff group 25·GL5(2), Quaest. Math., 39 (2016), 561-576.
    [20] A. L. Prins and R. L. Fray, The Fischer-Clifford matrices of an extension group of the form 27:(25:S6), Int. J. Group Theory, 3 (2014), 21-39.
    [21] The GAP Group, GAP--Groups, Algorithms, and Programming, Version 4.6.3, 2013. Available from:
    http://www.gap-system.org.
    [22] T. T. Seretlo, Fischer Clifford Matrices and Character Tables of Certain Groups Associated with Simple Groups $O^+_{10}(2)$, $HS$ and $Ly$, PhD Thesis, University of KwaZulu Natal, 2011.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3194) PDF downloads(295) Cited by(1)

Article outline

Figures and Tables

Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog