Research article

Spectral properties of a fourth-order eigenvalue problem with quadratic spectral parameters in a boundary condition

  • Received: 25 October 2019 Accepted: 01 January 2020 Published: 08 January 2020
  • MSC : 34B05, 34B09

  • Consider the linear eigenvalue problem of fourth-order $ y^{(4)}(x)-(q(x)y'(x))' = \lambda y(x),\ \ \ 0 \lt x \lt l,\\ y(0) = y'(0) = 0,\\ (a_0+a_1\lambda+a_2\lambda^2)y'(l)+(b_0+b_1\lambda+b_2\lambda^2)y''(l) = 0,\\ y(l)\cos\delta-Ty(l)\sin\delta = 0, $ where \lt i \gt λ \lt /i \gt is a spectal parameter, $\delta\in[\frac{\pi}{2}, \pi]$, \lt i \gt Ty \lt /i \gt = \lt i \gt y \lt /i \gt ''' - \lt i \gt qy \lt /i \gt ', \lt i \gt q \lt /i \gt ( \lt i \gt x \lt /i \gt ) is a positive absolutely continuous function on the interval [0, \lt i \gt l \lt /i \gt ], \lt i \gt δ \lt /i \gt , \lt i \gt a \lt /i \gt \lt sub \gt \lt i \gt i \lt /i \gt \lt /sub \gt and \lt i \gt b \lt /i \gt \lt sub \gt \lt i \gt i \lt /i \gt \lt /sub \gt ( \lt i \gt i \lt /i \gt = 0, 1, 2) are real constants. We obtain not only the existence, simplicity and interlacing properties of the eigenvalues, the oscillation properties of the eigenfunctions, but also the asymptotic formula of the eigenvalues and the corresponding eigenfunctions for sufficiently large \lt i \gt n \lt /i \gt . Moreover, a new inner Hilbert space and a new sufficient conditions will be given to discuss the basis properties of the system of the eigenfunctions in \lt i \gt L \lt /i \gt \lt sub \gt \lt i \gt p \lt /i \gt \lt /sub \gt (0, \lt i \gt l \lt /i \gt ).

    Citation: Chenghua Gao, Maojun Ran. Spectral properties of a fourth-order eigenvalue problem with quadratic spectral parameters in a boundary condition[J]. AIMS Mathematics, 2020, 5(2): 904-922. doi: 10.3934/math.2020062

    Related Papers:

  • Consider the linear eigenvalue problem of fourth-order $ y^{(4)}(x)-(q(x)y'(x))' = \lambda y(x),\ \ \ 0 \lt x \lt l,\\ y(0) = y'(0) = 0,\\ (a_0+a_1\lambda+a_2\lambda^2)y'(l)+(b_0+b_1\lambda+b_2\lambda^2)y''(l) = 0,\\ y(l)\cos\delta-Ty(l)\sin\delta = 0, $ where \lt i \gt λ \lt /i \gt is a spectal parameter, $\delta\in[\frac{\pi}{2}, \pi]$, \lt i \gt Ty \lt /i \gt = \lt i \gt y \lt /i \gt ''' - \lt i \gt qy \lt /i \gt ', \lt i \gt q \lt /i \gt ( \lt i \gt x \lt /i \gt ) is a positive absolutely continuous function on the interval [0, \lt i \gt l \lt /i \gt ], \lt i \gt δ \lt /i \gt , \lt i \gt a \lt /i \gt \lt sub \gt \lt i \gt i \lt /i \gt \lt /sub \gt and \lt i \gt b \lt /i \gt \lt sub \gt \lt i \gt i \lt /i \gt \lt /sub \gt ( \lt i \gt i \lt /i \gt = 0, 1, 2) are real constants. We obtain not only the existence, simplicity and interlacing properties of the eigenvalues, the oscillation properties of the eigenfunctions, but also the asymptotic formula of the eigenvalues and the corresponding eigenfunctions for sufficiently large \lt i \gt n \lt /i \gt . Moreover, a new inner Hilbert space and a new sufficient conditions will be given to discuss the basis properties of the system of the eigenfunctions in \lt i \gt L \lt /i \gt \lt sub \gt \lt i \gt p \lt /i \gt \lt /sub \gt (0, \lt i \gt l \lt /i \gt ).


    加载中


    [1] Z. S. Aliyev, A. A. Dunyamaliyeva, Y. T. Mehraliyev, Basis properties in Lp of root functions of Sturm-Liouville problem with spectral parameter-dependent boundary conditions, Mediterr. J. Math., 14 (2017), 131.
    [2] Z. S. Aliyev, On basis properties of root functions of a boundary value problem containing a spectral parameter in the boundary conditions, Dokl. Math., 87 (2013), 137-139.
    [3] Z. S. Aliyev, Basis properties in Lp of systems of root functions of a spectral problem with spectral parameter in a boundary condition, Differ. Equ., 47 (2011), 766-777.
    [4] N. B. Kerimov, Z. S. Aliyev, On oscillation properties of the eigenfunctions of a fourth order differential operator, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 25 (2005), 63-76.
    [5] N. B. Kerimov, Z. S. Aliyev, On the basis property of the system of eigenfunctions of a spectral problem with spectral parameter in a boundary condition, Differ. Equ., 43 (2007), 886-895.
    [6] N. B. Kerimov, R. G. Poladov, On basisicity in Lp(0 < p < ∞) of the system of eigenfunctions of one boundary value problem, I, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 22 (2005), 53-64.
    [7] N. B. Kerimov, R. G. Poladov, On basisicity in Lp(0 < p < ∞) of the system of eigenfunctions of one boundary value problem, II, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 23 (2005), 65-76.
    [8] N. B. Kerimov, E. A. Maris, On the uniform convergence of Fourier series expansions for SturmLiouville problems with a spectral parameter in the boundary conditions, Results Math., 73 (2018), 102.
    [9] Z. S. Aliyev, A. A. Dunyamalieva, Defect basis property of a system of root functions of a SturmLiouville problem with spectral parameter in the boundary conditions, Differ. Equ., 51 (2015), 1259-1276.
    [10] N. Yu. Kapustin, E. I. Moiseev, On the basis property in the space Lp of systems of eigenfunctions corresponding to two problems with the spectral parameter in the boundary condition, Differ. Uravn., 36 (2000), 1357-1360.
    [11] P. Binding, Patrick J. Browne, Application of two parameter eigencurves to Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Proc. Edinburgh Math. Soc., 125 (1995), 1205-1218.
    [12] N. Yu. Kapustin, On the basis property of the system of eigenfunctions of a problem with squared spectral parameter in a boundary condition, Differ. Equ., 51 (2015), 1274-1279.
    [13] J. Behrndt, Boundary value problems with eigenvalue depending boundary conditions, Math. Nachr., 282 (2009), 659-689.
    [14] B. Curgus, The linearization of boundary eigenvalue problems and reproducing kernel Hilbert spaces, Linear Algebra Appl., 329 (2001), 97-136.
    [15] A. Dijksma, H. Langer, H. de Snoo, Symmetric Sturm-Liouville operators with eigenvalue depending boundary conditions, CMS Conf. Proc., (1987), 87-116.
    [16] A. Dijksma, H. Langer, H. de Snoo, Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions, Math. Nachr., 161 (1993), 107-154.
    [17] A. Dijksma, H. Langer, Operator theory and ordinary differential operators. Lectures on operator theory and its applications, Fields Inst. Monogr., (1996), 73-139.
    [18] C. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary condition, Proc. Ednib. Math. Soc., 77 (1977), 293-308.
    [19] C. Fulton, S. Pruess, Numerical methods for a singular eigenvalue problem with eigenparameter in the boundary conditions, J. Math. Anal. Appl., 71 (1979), 431-462.
    [20] C. Gao, X. Li, F. Zhang, Eigenvalues of discrete Sturm-Liouville problems with nonlinear eigenparameter dependent boundary conditions, Quaest. Math., 41 (2018), 773-797.
    [21] C. Gao, L. Lv, Y. Wang, Spectra of a discrete Sturm-Liouville problem with eigenparameterdependent boundary conditions in pontryagin space, Quaest. Math., (2019), 1-26.
    [22] C. Gao, R. Ma, F. Zhang, Spectrum of discrete left definite Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Linear Multilinear A., 65 (2017), 1905-1923.
    [23] R. Ma, C. Gao, Y. Lu, Spectrum theory of second-order difference equations with indefinite weight, J. Spectr. Theory, 8 (2018), 971-985.
    [24] R. Ma, C. Gao, Eigenvalues of discrete linear second-order periodic and antiperiodic eigenvalue problems with sign-changing weight, Linear Algebra Appl., 467 (2015), 40-56.
    [25] B. J. Harmsen, A. Li, Discrete Sturm-Liouville problems with nonlinear parameter in the boundary conditions, J. Differ. Equ. Appl., 13 (2007), 639-653.
    [26] B. Han, Z. Wang, Z. Du, Traveling waves for nonlocal Lotka-Volterra competition systems, Discrete Contin. Dyn. syst. Ser. B., (2020), DOI:10.3934/dcdsb.2020011.
    [27] P. Liu, J. Shi, Bifurcation of positive solutions to scalar reaction-diffusion equations with nonlinear boundary condition, J. Differential Equations, 264 (2018), 425-454.
    [28] C. Gao, X. Li, R. Ma, Eigenvalues of a linear fourth-order differential operator with squared spectral parameter in a boundary condition, Mediterr. J. Math., 15 (2018), 107.
    [29] Z. S. Aliyev, S. B. Guliyeva, Propreties of natural frequencies and harmonic bending vibrations of a rod at one end of which is concentrated inertial load, J. Differential Equations, 263 (2017), 5830-5845.
    [30] O. O. Ibrogimov, C. Tretter, On the spectrum of an operator in truncated Fock space, Oper. Theory Adv. Appl., 263 (2018), 321-334. doi: 10.1007/978-3-319-68849-7_12
    [31] C. Tretter, Boundary eigenvalue problems for differential equations Nη = λPη and λ-polynomial boundary conditions, J. Differential Equations, 170 (2001), 408-471.
    [32] N. D. Kopachevsky, R. Mennicken, Ju. S. Pashkova, et al. Complete second order linear differential operator equations in Hilbert space and applications in hydrodynamics, Trans. Amer. Math. Soc., 356 (2004), 4737-4766.
    [33] Z. S. Aliyev, Basis properties of a fourth order differential operator with spectral parameter in the boundary condition, Cent. Eur. J. Math., 8 (2010), 378-388.
    [34] T. Bhattacharyya, P. Binding, K. Seddighi, Two-parameter right definite Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Proc. Edinburgh Math. Soc., 131 (2001), 45-58.
    [35] P. Binding, P. J. Browne, K. Seddighi, Sturm-Liouville problems with eigenparameter dependent boundary conditions, Proc. Edinburgh Math. Soc., 37 (1993), 57-72.
    [36] P. Binding, A hierarchy of Sturm-Liouville problems, Math. Meth. Appl. Sci., 26 (2003), 349-357.
    [37] A. A. Shaklikov, Basis properties of root functions of differential operators with spectral parameter in the boundary conditions, Differ. Equ., 55 (2019), 647-659.
    [38] N. N. Konechnaya, K. A. Mirzoev, A. A. Shkalikov, On the asymptotic behavior of solutions to two-term differential equations with singular coefficients, Math. Notes, 104 (2018), 244-252.
    [39] J. B. Amara, Sturm theory for the equation of vibrating beam, J. Math. Anal. Appl., 349 (2009), 1-9. doi: 10.1016/j.jmaa.2008.07.055
    [40] J. B. Amara, Oscillation properties for the equation of vibrating beam with irregular boundary conditions, J. Math. Anal. Appl., 360 (2009), 7-13.
    [41] B. Belinskiy, J. P. Dauer, Y. Xu, Inverse scattering of acoustic waves in an ocean with ice cover, Appl. Anal., 61 (1996), 255-283.
    [42] M. A. Naimark, Linear Differential Operators, Moscow: Nauka, 1969.
    [43] D. O. Banks, G. J. Kurowski, A Pröfer transformation for the equation of a vibrating beam subject to axial forces, J. Differential Equations, 24 (1977), 57-74.
    [44] O. Christensen, An introduction to frames and Riesz bases, Boston: Birkhauser, 2003.
    [45] B. S. Kashin, A. A. Saakyan, Orthogonal Series, Moscow: Nauka, 1984.
    [46] I. Ts. Goghberg, A. S. Markus, Stability of bases of Banach and Hilbert space, Izv. Akad. Nauk. Mold. SSR, 5 (1962), 17-35.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3799) PDF downloads(398) Cited by(6)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog