Research article

Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order

  • Received: 11 October 2019 Accepted: 16 December 2019 Published: 16 December 2019
  • MSC : 30C45, 30C80

  • In this paper, we obtain the upper bounds for the n-th (n ≥ 1) coefficients for meromorphic bi-subordinate functions of complex order by using Faber polynomial expansions. The results, which are presented in this paper, would generalize those in related works of several earlier authors.

    Citation: Erhan Deniz, Hatice Tuǧba Yolcu. Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order[J]. AIMS Mathematics, 2020, 5(1): 640-649. doi: 10.3934/math.2020043

    Related Papers:

  • In this paper, we obtain the upper bounds for the n-th (n ≥ 1) coefficients for meromorphic bi-subordinate functions of complex order by using Faber polynomial expansions. The results, which are presented in this paper, would generalize those in related works of several earlier authors.


    加载中


    [1] H. Airault, A. Bouali, Differential calculus on the Faber polynomials, B. Sci. Math., 130 (2006), 179-222. doi: 10.1016/j.bulsci.2005.10.002
    [2] H. Airault, J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, B. Sci. Math., 126 (2002), 343-367. doi: 10.1016/S0007-4497(02)01115-6
    [3] A. Bouali, Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions, B. Sci. Math., 130 (2006), 49-70. doi: 10.1016/j.bulsci.2005.08.002
    [4] S. Bulut, Coefficient estimates for new subclasses of meromorphic bi-univalent functions, Int. Scholarly Res. Notices, 2014 (2014), 376076.
    [5] S. Bulut, N. Magesh, V. K. Balaji, Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris, 353 (2015), 113-116. doi: 10.1016/j.crma.2014.10.019
    [6] P. L. Duren, Coefficients of meromorphic schlicht functions, P. Am. Math. Soc., 28 (1971), 169-172. doi: 10.1090/S0002-9939-1971-0271329-7
    [7] G. Faber, Uber polynomische Entwickelungen, Math. Ann., 57 (1903), 389-408. doi: 10.1007/BF01444293
    [8] S. A. Halim, S. G. Hamidi, V. Ravichandran, et al. Coefficient estimates for certain classes of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris, 352 (2014), 277-282. doi: 10.1016/j.crma.2014.01.010
    [9] S. G. Hamidi, S. A. Halim, J. M. Jahangiri, Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris, 351 (2013), 349-352. doi: 10.1016/j.crma.2013.05.005
    [10] S. G. Hamidi, S. A. Halim, J. M. Jahangiri, Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci., 2013 (2013), 498159.
    [11] T. Janani, G. Murugusundaramoorthy, Coefficient estimates of meromorphic bi-starlike functions of complex order, Int. J. Anal. Appl., 4 (2014), 68-77.
    [12] G. P. Kapoor, A. K. Mishra, Coefficient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl., 329 (2007), 922-934. doi: 10.1016/j.jmaa.2006.07.020
    [13] Y. Kubota, Coefficients of meromorphic univalent functions, Kodai Mathematical Seminar Reports, Department of Mathematics, Tokyo Institute of Technology, 28 (1977), 253-261. doi: 10.2996/kmj/1138847445
    [14] A. Motamednezhad, S. Salehian, Faber polynomial coefficient estimates for certain subclass of meromorphic bi-univalent functions, Commun. Korean Math. Soc., 33 (2018), 1229-1237.
    [15] F. M. Sakar, Estimating coefficients for certain subclasses of meromorphic and bi-univalent functions, J. Inequal. Appl., 2018 (2018), 283.
    [16] T. Panigrahi, Coefficient bounds for certain subclasses of meromorphic and bi-univalent functions, B. Korean Math. Soc., 50 (2013), 1531-1538. doi: 10.4134/BKMS.2013.50.5.1531
    [17] C. Pommerenke, Univalent Functions, Gottingen: Vandenhoeck & Ruprecht, 1975.
    [18] M. Schiffer, Sur un problème d'extrémum de la représentation conforme, B. Soc. Math. Fr., 66 (1938), 48-55.
    [19] G. Schober, Coefficients of inverses of meromorphic univalent functions, P. Am. Math. Soc., 67 (1977), 111-116. doi: 10.1090/S0002-9939-1977-0454000-3
    [20] G. Springer, The coefficient problem for schlicht mappings of the exterior of the unit circle, T. Am. Math. Soc., 70 (1951), 421-450. doi: 10.1090/S0002-9947-1951-0041935-5
    [21] P. G. Todorov, On the Faber polynomials of the univalent functions of class, J. Math. Anal. Appl., 162 (1991), 268-276. doi: 10.1016/0022-247X(91)90193-4
    [22] H. G. Xiao, Q. H. Xu, Coefficient estimates for three generalized classes of meromorphic and bi-univalent functions, Filomat, 29 (2015), 1601-1612. doi: 10.2298/FIL1507601X
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3543) PDF downloads(363) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog