Citation: Elisa Padovano, Francesco Trevisan, Sara Biamino, Claudio Badini. Processing of hybrid laminates integrating ZrB2/SiC and SiC layers[J]. AIMS Materials Science, 2020, 7(5): 552-564. doi: 10.3934/matersci.2020.5.552
[1] | Takeuchi Y, Park C, Noborio K, et al. (2010) Heat transfer in SiC compact heat exchanger. Fusion Eng Des 85: 1266-1270. doi: 10.1016/j.fusengdes.2010.03.017 |
[2] | Steen M, Ranzani L (2000) Potential of SiC as a heat exchanger material in combined cycle plant. Ceram Int 26: 849-854. doi: 10.1016/S0272-8842(00)00027-4 |
[3] | Casady JB, Johnson RW (1996) Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid State Electron 39: 1409-1422. doi: 10.1016/0038-1101(96)00045-7 |
[4] | Joshi RP, Neudeck PG, Fazi C (2000) Analysis of the temperature dependent thermal conductivity of silicon carbide for high temperature applications. J Appl Phys 88: 265-269. doi: 10.1063/1.373651 |
[5] | Pachaiyappan R, Gopinath R, Gopalakannan S (2015) Processing techniques of a silicon carbide heat exchanger and its capable properties-A review. Appl Mech Mater 787: 513-517. doi: 10.4028/www.scientific.net/AMM.787.513 |
[6] | Gulbransen EA, Jansson SA (1972) The high-temperature oxidation, reduction, and volatilization reactions of silicon and silicon carbide. Oxid Met 4: 181-201. doi: 10.1007/BF00613092 |
[7] | Badini C, Liedtke V, Euchberger G, et al. (2012) Self passivating behavior of multilayer SiC under simulated atmospheric re-entry conditions. J Eur Ceram Soc 32: 4435-4445. doi: 10.1016/j.jeurceramsoc.2012.07.031 |
[8] | Jacobson NS, Fox DS, Opila EJ (1998) High temperature oxidation of ceramic matrix composites. Pure Appl Chem 70: 493-500. doi: 10.1351/pac199870020493 |
[9] | Squire TH, Marschall J (2010) Material property requirements for analysis and design of UHTC components in hypersonic applications. J Eur Ceram Soc 30: 2239-2251. doi: 10.1016/j.jeurceramsoc.2010.01.026 |
[10] | Levine SR, Opila EJ, Halbig MC, et al. (2002) Evaluation of ultra-high temperature ceramics foraeropropulsion use. J Eur Ceram Soc 22: 2757-2767. doi: 10.1016/S0955-2219(02)00140-1 |
[11] | Wuchina E, Opila E, Opeka M, et al. (2007) UHTCs: Ultra-high temperature ceramic materials for extreme environment applications. Electrochem Soc Interface 16: 30-36. |
[12] | Neuman EW, Hilmas GE, Fahrenholtz WG (2013) Strength of zirconium diboride to 2300 ℃. J Am Ceram Soc 96: 47-50. doi: 10.1111/jace.12114 |
[13] | Hu P, Gui K, Yang Y, et al. (2013) Effect of SiC content on the ablation and oxidation behavior of ZrB2-based ultra high temperature ceramic composites. Materials 6: 1730-1744. doi: 10.3390/ma6051730 |
[14] | Monteverde F, Bellosi A (2002) Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride. Scripta Mater 46 223-228. |
[15] | Padovano E, Badini C, Celasco E, et al. (2015) Oxidation behavior of ZrB2/SiC laminates: Effect of composition on microstructure and mechanical strength. J Eur Ceram Soc 35: 1699-1714. doi: 10.1016/j.jeurceramsoc.2014.12.029 |
[16] | Daudt NF, Hackemüller FJ, Bram M (2019) Manufacturing of Ti-10Nb based metal sheets by tape casting. Mater Lett 237: 161-164. doi: 10.1016/j.matlet.2018.11.109 |
[17] | Muralidharan MN, Sunny EK, Dayas KR, et al. (2011) Optimization of process parameters for the production of Ni-Mn-Co-Fe based NTC chip thermistors through tape casting route. J Alloys Compd 509: 9363-9371. doi: 10.1016/j.jallcom.2011.07.037 |
[18] | Tietz F, Buchkremer HP, Stöver D (2002) Components manufacturing for solid oxide fuel cells. Solid State Ionics 152-153: 373-381. doi: 10.1016/S0167-2738(02)00344-2 |
[19] | Barcena J, Lagos M, Agote I, et al. (2013) SMARTEES FP7 space project-towards a new TPS reusable concept for atmospheric eeentry from low earth orbit. 7th European Workshop on Thermal Protection System and Hot Structures. |
[20] | Padovano E, Badini C, Biamino S, et al. (2013) Pressureless sintering of ZrB2-SiC composite laminates using boron and carbon as sintering aids. Adv Appl Ceram 112: 478-486. doi: 10.1179/1743676113Y.0000000119 |
[21] | Clegg WJ (1992) The fabrication and failure of laminar ceramic composites. Acta Metall Et Mater 40: 3085-3093. doi: 10.1016/0956-7151(92)90471-P |
[22] | Zhang J, Huang R, Gu H, et al. (2005) High toughness in laminated SiC ceramics from aqueous tape casting. Scripta Mater 52: 381-385. doi: 10.1016/j.scriptamat.2004.10.026 |
[23] | Qin S, Jiang D, Zhang J, et al. (2003) Design, fabrication and properties of layered SiC/TiC ceramic with graded thermal residual stress. J Eur Ceram Soc 23: 1491-1497. doi: 10.1016/S0955-2219(02)00306-0 |
[24] | Prakash O, Sarkar P, Nicholson PS (1995) Crack deflection in ceramic/ceramic laminates with strong interfaces. J Am Ceram Soc 78: 1125-1127. doi: 10.1111/j.1151-2916.1995.tb08455.x |
[25] | Lakshminarayanan R, Shetty DK, Cutler RA (1996) Toughening of layered ceramic composites with residua l surface compression. J Am Ceram Soc 79: 79-87. doi: 10.1111/j.1151-2916.1996.tb07883.x |
[26] | Green DJ, Cai PZ, Messing GL (1999) Residual stresses in alumina-zirconia laminates. J Eur Ceram Soc 19: 2511-2517. doi: 10.1016/S0955-2219(99)00103-X |
[27] | Chamberlain AL, Fahrenholtz WG, Hilmas GE (2006) Pressureless sintering of zirconium diboride. J Am Ceram Soc 89: 450-456. doi: 10.1111/j.1551-2916.2005.00739.x |
[28] | Tripp WC, Graham HC (1971) Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800 ℃ to 1500 ℃. J Electrochem Soc 118: 1195-1199. doi: 10.1149/1.2408279 |
[29] | Chamberlain A, Fahrenholtz W, Hilmas G, et al. (2004) High-strength zirconium diboride-based ceramics. J Am Ceram Soc 87: 1170-1172. doi: 10.1111/j.1551-2916.2004.01170.x |
[30] | Zhang SC, Hilmas GE, Fahrenholtz WG (2008) Pressureless sintering of ZrB2-SiC ceramics. J Am Ceram Soc 91: 26-32. |
[31] | Biamino S, Antonini A, Eisenmenger-Sittner C, et al. (2010) Multilayer SiC for thermal protection system of space vehicles with decreased thermal conductivity through the thickness. J Eur Ceram Soc 30: 1833-1840. doi: 10.1016/j.jeurceramsoc.2010.01.040 |
[32] | Biamino S, Antonini A, Pavese M, et al. (2008) MoSi2 laminate processed by tape casting: Microstructure and mechanical properties' investigation. Intermetallics 16: 758-768. doi: 10.1016/j.intermet.2008.02.007 |
[33] | Sánchez-Herencia AJ, Baudín de la Lastra C (2009) Ceramic laminates with tailored residual stresses. Bol Soc Esp Ceram 48: 311-320. |
[34] | Sglavo VM, Paternoster M, Bertoldi M (2005) Tailored residual stresses in high reliability alumina-mullite ceramic laminates. J Am Ceram Soc 88: 2826-2832. doi: 10.1111/j.1551-2916.2005.00479.x |
[35] | Bermejo R, Pascual J, Lube T, et al. (2008) Optimal strength and toughness of Al2O3-ZrO2 laminates designed with external or internal compressive layers. J Eur Ceram Soc 28: 1575-1583. doi: 10.1016/j.jeurceramsoc.2007.11.003 |
[36] | Thompson MJ, Fahrenholtz WG, Hilmas GE (2012) Elevated temperature thermal properties of ZrB2 with carbon additions. J Am Ceram Soc 95: 1077-1085. |
[37] | Hillman C, Suo Z, Lange FF (1996) Cracking of laminates subjected to biaxial tensile stresses. J Am Ceram Soc 79: 2127-2133. doi: 10.1111/j.1151-2916.1996.tb08946.x |
[38] | Spowart JE, Déve HE (2000) Compressive failure of metal matrix composites, In: Kelly A, Zweben C, Comprehensive Composite Materials, Elsevier, 3: 221-245. |
[39] | Mari D, Krawitz AD, Richardson JW, et al. (1996) Residual stress in WC-Co measured by neutron diffraction. Mater Sci Eng A-Struct 209: 197-205. doi: 10.1016/0921-5093(95)10147-0 |
[40] | Shackelford JF, Alexander W (2001) CRC Materials Science and Engineering Handbook, 4 Eds., New York: CRC press, 49: 1557-1558. |
[41] | Bansal PN (2006) Handbook of Ceramic Composites, Springer Science & Business Media, 200. |
[42] | Zhang X, Zhou P, Hu P, et al. (2011) Toughening of laminated ZrB2-SiC ceramics with residual surface compression. J Eur Ceram Soc 31: 2415-2423. doi: 10.1016/j.jeurceramsoc.2011.05.024 |
[43] | Guo SQ (2009) Densification of ZrB2-based composites and their mechanical and physical properties: A review. J Eur Ceram Soc 29: 995-1011. doi: 10.1016/j.jeurceramsoc.2008.11.008 |
[44] | Jacobson NS, Myers DL (2011) Active oxidation of SiC. Oxid Met 75: 1-25. doi: 10.1007/s11085-010-9216-4 |
[45] | Niu Y, Wang H, Li H, et al. (2013) Dense ZrB2-MoSi2 composite coating fabricated by low pressure plasma spray (LPPS). Ceram Int 39: 9773-9777. doi: 10.1016/j.ceramint.2013.05.038 |
[46] | Monteverde F, Savino R (2007) Stability of ultra-high-temperature ZrB2-SiC ceramics under simulated atmospheric re-entry conditions. J Eur Ceram Soc 27: 4797-4805. doi: 10.1016/j.jeurceramsoc.2007.02.201 |
[47] | Karlsdottir SN, Halloran JW, Henderson CE (2007) Convection patterns in liquid oxide films on ZrB2-SiC composites oxidized at a high temperature. J Am Ceram Soc 90: 2863-2867. doi: 10.1111/j.1551-2916.2007.01784.x |
[48] | Fahrenholtz WG (2007) Thermodynamic analysis of ZrB2-SiC oxidation: Formation of a SiC-depleted region. J Am Ceram Soc 90: 143-148. doi: 10.1111/j.1551-2916.2006.01329.x |