Citation: M.A.S. Venâncio, M.A.R. Loja. A study on the behavior of laminated and sandwich composite plates using a layerwise theory[J]. AIMS Materials Science, 2016, 3(4): 1587-1614. doi: 10.3934/matersci.2016.4.1587
[1] | Reissner E (1972) A Consistent Treatment of Transverse Shear Deformations in Laminated Anisotropic Plates. AIAA J 10: 716–718. |
[2] | Whitney JM (1969) The Effect of Transverse Shear Deformation on the Bending of Laminated Plates. J Compos Mater 3: 534–547. doi: 10.1177/002199836900300316 |
[3] | Lo KH, Christensen RM, Wu EM (1977) A High-Order Theory of Plate Deformation—Part 2: Laminated Plates. J Appl Mech 44: 669–676. doi: 10.1115/1.3424155 |
[4] | Pandya BN, Kant T (1988) Higher-order shear deformable theories for flexure of sandwich plates —Finite element evaluations. Int J Solids Struct 24: 1267–1286. doi: 10.1016/0020-7683(88)90090-X |
[5] | Bernardo GMS, Damásio FR, Silva TAN, et al. (2016) A Study on the Structural Behaviour of FGM Plates: Static and Free Vibrations Analyses. Compos Struct 136: 124–138. doi: 10.1016/j.compstruct.2015.09.027 |
[6] | Loja MAR, Barbosa JI, Soares CMM (2015) Analysis of Sandwich Beam Structures Using Kriging Based Higher Order Models. Compos Struct 119: 99–106. doi: 10.1016/j.compstruct.2014.08.019 |
[7] | Viola E, Tornabene F, Fantuzzi N (2013) General higher-order shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels. Compos Struct 95: 639–666. doi: 10.1016/j.compstruct.2012.08.005 |
[8] | Reddy JN (1984) A refined nonlinear theory of plates with transverse shear deformation. Int J Solids Struct 20: 881–896. doi: 10.1016/0020-7683(84)90056-8 |
[9] | Ferreira AJM, Barbosa JT (2000) Buckling behaviour of composite shells. Compos Struct 50: 93–98. doi: 10.1016/S0263-8223(00)00090-8 |
[10] | Dehkordi MB, Khalili SMR, Carrera E (2016) Non-linear transient dynamic analysis of sandwich plate with composite face-sheets embedded with shape memory alloy wires and flexible core-based on the mixed LW (layer-wise)/ESL (equivalent single layer) models. Compos Part B-Eng 87: 59–74. doi: 10.1016/j.compositesb.2015.10.008 |
[11] | Thai HC, Nguyen-Xuan H, Bordas S, et al. (2015) Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory. Mech Adv Mater Struct 22: 451–469. doi: 10.1080/15376494.2013.779050 |
[12] | Thai CH, Ferreira AJM, Bordas S, et al. (2014) Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. Eur J Mech A-Solid 43: 89–108. doi: 10.1016/j.euromechsol.2013.09.001 |
[13] | Thai CH, Nguyen-Xuan H, Nguyen-Thanh N, et al. (2012) Static, free vibration and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach. Int J Numer Meth Eng 91: 571–603. doi: 10.1002/nme.4282 |
[14] | Thai-Hoang C, Nguyen-Thanh N, Nguyen-Xuan H, et al. (2011) An alternative alpha finite element method with discrete shear gap technique for analysis of laminated composite plates. Appl Math Comput 217: 7324–7348. |
[15] | Thai CH, Ferreira AJM, Carrera E, et al. (2013) Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory. Compos Struct 10: 196–214. |
[16] | Carrera E (2003) Historical review of Zig-Zag theories for multilayered plates and shells. Appl Mech Rev 56: 287–308. doi: 10.1115/1.1557614 |
[17] | Carrera E (2003) Theories and Finite Elements for Multilayered Plates and Shells: A Unified compact formulation with numerical assessment and benchmarking. Arch Comput Method E 10: 215–296. |
[18] | Demasi L, Yu W (2013) Assess the Accuracy of the Variational Asymptotic Plate and Shell Analysis (VAPAS) Using the Generalized Unified Formulation (GUF). Mech Adv Mater Struct 20: 227–241. doi: 10.1080/15376494.2011.584150 |
[19] | Filippi M, Carrera E (2016) Bending and vibrations analyses of laminated beams by using a zig-zag-layer-wise theory. Compos Part B-Eng 98: 269–280. doi: 10.1016/j.compositesb.2016.04.050 |
[20] | Ferreira AJM (2005) Analysis of Composite Plates Using a Layerwise Theory and Multiquadrics Discretization. Mech Adv Mater Struct 12: 99–112. doi: 10.1080/15376490490493952 |
[21] | Vuksanović D, Ćetković M (2005) Analytical solution for multilayer plates using general layerwise plate theory. Facta Universitatis Series: Arch Civil Eng 3: 121–136. doi: 10.2298/FUACE0502121V |
[22] | Nosier A, Kapania RK, Reddy JN (1993) Free vibration analysis of laminated plates using a layerwise theory. AIAA J 31: 2335–2346. doi: 10.2514/3.11933 |
[23] | Sainsbury MG, Zhang QJ (1999) The Galerkin element method applied to the vibration of damped sandwich beams. Comput Struct 71: 239–256. doi: 10.1016/S0045-7949(98)00242-9 |
[24] | Daya EM, Potier-Ferry M (2001) A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures. Comput Struct 79: 533–541. doi: 10.1016/S0045-7949(00)00151-6 |
[25] | Barkanov E, Skukis E, Petitjean B (2009) Characterisation of viscoelastic layers in sandwich panels via an inverse technique. J Sound Vib 327: 402–412. doi: 10.1016/j.jsv.2009.07.011 |
[26] | Araújo AL, Soares CMM, Soares CAM, et al. (2010) Optimal design and parameter estimation of frequency dependent viscoelastic laminated sandwich composite plates. Compos Struct 92: 2321–2327. doi: 10.1016/j.compstruct.2009.07.006 |
[27] | Ferreira AJM, Fasshauer GE, Batra RC, et al. (2008) Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter. Compos Struct 86: 328–343. doi: 10.1016/j.compstruct.2008.07.025 |
[28] | Ferreira AJM, Viola E, Tornabene F, et al. (2013) Analysis of sandwich plates by generalized differential quadrature method. Math Probl Eng 964367: 12. |
[29] | Reddy JN (1997) Mechanics of laminated composite plates. Boca Raton, Florida, USA: CRC Press. |
[30] | DivinycellH Technical Data. Diab International AB, 252 21 Helsingborg, Sweden 2016. Available from: http://www.diabgroup.com/en-GB/Products-and-services#. |
[31] | Srinivas S (1973) A refined analysis of composite laminates. J Sound Vib 30: 495–507. doi: 10.1016/S0022-460X(73)80170-1 |
[32] | Ferreira AJM (2010) Problemas de Elementos Finitos. Lisboa, Portugal: Fundação Calouste Gulbenkian. |
[33] | Liew KM, Huang YQ, Reddy JN (2003) Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method. Comput Method Appl M 192: 2203–2222. doi: 10.1016/S0045-7825(03)00238-X |
[34] | Khdeir AA, Librescu L (1988) Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory: part II—Buckling and free vibration. Compos Struct 9: 259–277. doi: 10.1016/0263-8223(88)90048-7 |
[35] | Srinivas S, Rao CVJ, Rao AK (1970) An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates. J Sound Vib 12: 187–199. doi: 10.1016/0022-460X(70)90089-1 |