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Abstract: The numerical study of structures constituted from composite materials, regardless the 
underlying shear deformation theory used may be framed into an equivalent single-layer or a 
layerwise methodology. The adoption of one of these approaches is mainly ruled by the detail one 
needs to put in the description of the deformation kinematics and on the subsequent description of 
other relevant quantities such as stresses or frequencies. Being important to address both qualitative 
and quantitatively the influence of different parameters involved in the models and materials used to 
represent a structure, it is also relevant to understand how layerwise theories can predict its static and 
dynamic response. These different issues may be addressed by carrying out parametric studies to 
characterize the influence of specific parameters on the mechanical performance of sandwich and 
laminated composite plates. To this purpose a layerwise theory based on the first order shear 
deformation theory, is considered, and a set of different test cases are analyzed in light of this 
approach, providing results which may also be useful for later comparison purposes. 

Keywords: fibrous composite materials; sandwich plates; laminated composite plates; layerwise 
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1. Introduction  

Composite laminates and sandwich plates constitute a commonly used structural component 
with many applications in several areas of engineering. Whether considering one or the other type of 
plate, we have a multilayer configuration, where it is possible to tailor their constitution in order to 
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achieve a better performance, fitted to specific operating requirements and to ensure a satisfactory 
service life. A typical sandwich structure consists of one or more layers of high-strength and 
high-stiffness face sheets, or skins, bonded to a core which may have significantly different elastic 
properties. In this layered configuration we may also consider the stacking of differently oriented 
fiber reinforced materials, as well as a combination of different composite materials. In any case it 
may be important to achieve a more realistic characterization of these structures response, namely 
concerning the description of the plate deformation kinematics, and therefore on the corresponding 
states of strain and stress distributions. The study of layered composite structures continues to attract 
the attention of many researchers, although the extent of the work developed so far. This may be due 
to continuous advances in the constitution of new materials and on their physical characterization, to 
the advances in technological processes, and probably also because the availability of more powerful 
computational resources, enables the use of more expensive algorithmic procedures and the 
manipulation of greater data volumes.  

In the context of equivalent single-layer approaches focused on the study of sandwich or 
laminated composite structures, we may find many published works. Within this broad branch, we 
may find works based on different basis theories ranging from the classical one to the higher order 
shear deformation theories. Just to name a few of them, we may refer the work carried out by 
Reissner [1] who studied the effect of the transverse shear deformations in plates consisting of 
anisotropic laminations symmetrical about their midplane. Closely related to this work, Whitney [2] 
has developed a bending theory for simply supported laminated plates, which included transverse 
shear deformations. He obtained closed form solutions for bending deflections, flexural vibration 
frequencies, and buckling loads. Later, Lo et al. [3] presented a higher order theory devoted to the 
study of the of laminated plates deformation, comparing the results obtained with elasticity solutions. 
Pandya and Kant [4] developed a higher order shear deformation model for the analysis of the 
bending analysis of symmetric sandwich plates. Their model assumed a non-linear variation of the 
in-plane displacements and a constant transverse one. Also in the context of the equivalent 
single-layer (ESL) approaches, Bernardo et al. [4,5] presented a study on the linear static and free 
vibrations behavior of functionally graded plates. To this purpose they have used plate models based 
on the first order shear deformation theory and implemented via traditional Lagrangean elements, 
kriging-based elements and via a meshless approach with radial basis functions. Loja et al. [6] 
analysed the transient dynamic behavior of sandwich structures, having a metallic core and 
functionally graded outer layers. The properties of the particulate composite metal-ceramic outer 
layers, were estimated using Mori-Tanaka scheme and the dynamic analyses considered first order 
and higher order shear deformation theories implemented though kriging finite element method. The 
transient dynamic response of these structures is carried out through Bossak-Newmark method. A 
framework for the formulation and the dynamic analysis computations of moderately thick laminated 
doubly-curved shells and panels was proposed by Viola et al. [7]. To that purpose a higher-order 
shear deformation theory was considered and the differential geometry was used to define the 
arbitrary shape of the middle surface of shells and panels with different curvatures. Following this 
single-layer approach, but in the context of non-linear theories, we can refer the work presented by 
Reddy [8] which proposed a higher-order shear deformation theory of plates accounting for the von 
Karman strains. Ferreira and Barbosa [9] presented a finite element model for the geometric 
non-linear analysis of composite shell structures. The non-linear incremental equilibrium equations 
were established using a total Lagrangian displacement formulation and the solution was obtained 
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via the incremental/iterative Newton-Raphson method as well as a spherical formulation of the 
arc-length methods. Recently, Dehkordi et al. [10] proceeded to a nonlinear dynamic analysis of 
sandwich plate with flexible core and laminated composite face sheets embedded with shape 
memory alloy wires. This study was based on the mixed layerwise and equivalent single layer 
(LW/ESL) models in the framework of Carrera’s Unified Formulation. It is also relevant to mention 
the work developed by Thai and his colleagues [11–15] in the context of the isogeometric analysis of 
laminated structures. This research field is expanding due to its versatility and integrative character; 
which goes from the computer aided design to the computer aided engineering wherein one may 
consider included the analysis of structures.  

The importance and adequacy of layerwise approaches to multilayer structural elements, as 
more efficient alternative methodologies when compared to the equivalent single layer ones, has 
been an object of study and discussion, and some comprehensive studies and reviews were published 
upon this subject, namely the ones due to Carrera [16,17]. In the first mentioned work of Carrera, he 
carried out an historical review on the zig-zag theories developed for the analysis of multilayered 
structures, wherein they describe a piecewise continuous displacement field in the plate thickness 
direction and fulfill interlaminar continuity of transverse stresses at each layer interface. In the 
second one referred in the present study, he made a review on the derivation of governing equations 
and finite element matrices for some of the most relevant plate/shell theories. He also addressed 
extensive numerical evaluations of available results, along with assessment and benchmarking. In a 
comprehensive study, Demasi et al. [18] assessed the accuracy of the variational asymptotic plate and 
shell analysis, when compared to different higher-order, zig-zag and layerwise theories generated 
through the invariant axiomatic framework denoted as generalized unified formulation. The 
axiomatic models were also compared to the elasticity solution developed for the case of sandwich 
structures with high face to core stiffness ratio. Among other works that have already been carried 
out within the layerwise theories, in the broad sense, we refer some. Filippi et al. [19] proposed 
one-dimensional layerwise theories using higher-order zig-zag functions defined over 
fictitious/mathematical layers of the cross-sectional area of laminated beams. Variable kinematics 
theories have been obtained using piecewise continuous power series expansions of an arbitrary 
order. Ferreira [20] combined a layerwise theory with the multiquadrics discretization to analyse 
laminated composite and sandwich plates. To this aim, he used radial basis functions to approximate 
the differential governing equations and the boundary conditions. Vuksanović and Ćetković [21] 
proposed Navier-type closed-form solution for static analysis of simply supported composite plate, 
based on generalized laminate plate theory. The mathematical model assumed a piecewise linear 
variation of the in-plane displacement components and a constant transverse displacement through 
the thickness. Nosier et al. [22] considered Reddy’s layer-wise theory to carry out free-vibration 
analysis of laminated plates, which results were further compared with those obtained from a 
full-fledged three-dimensional elasticity analysis and various ESL theories. The use of LW 
approaches to study the dynamic behavior of damped structures has also been used by some 
researchers, namely by Sainsbury and Zhang [23], Daya and Potier-Ferry [24], Barkanov et al. [25] 
and Araújo et al. [26]. Sainsbury and Zhang [23] proposed a finite element for damped sandwich 
beam structures combining polynomial shape functions of conventional finite element analysis with 
Galerkin orthogonal functions. They accounted for displacement consistency over the interfaces 
between the damping layer and the elastic layers to guarantee good accuracy. Daya and  
Pottier-Ferry [24] proposed a numerical method for the exact solution of nonlinear eigenvalue 
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problems. This method associates homotopy and asymptotic numerical techniques and it was applied 
to the calculation of the natural frequencies and the loss factors of viscoelastically damped sandwich 
structures. An inverse technique to characterize the nonlinear mechanical properties of viscoelastic 
core layers in sandwich panels was developed by Barkanov et al. [25]. This technique was based in 
vibration tests, allowing preserving the frequency and temperature dependences of the storage and 
loss moduli of viscoelastic materials. The use of an optimization approach based on the planning of 
the experiments and the response surface technique to minimize the error functional, enabled 
additionally the reduction of the computational cost. More recently, Araújo et al. [26] carried out 
optimization and parameter estimation studies of frequency dependent passive damping of sandwich 
structures with viscoelastic core. To this purpose he used a mixed-layerwise finite element model and 
the complex modulus approach to model the viscoelastic material behavior.  

In the present work, the authors consider a layerwise theory based on the assumptions of the 
first order shear deformation theory, layer by layer. The global kinematic through the thickness is 
therefore approximated in a piecewise manner, being potentially advantageous when compared to 
other equivalent single-layer higher order theories. A study both on the linear static and free 
vibrations behavior of three-layered configuration composite plates is presented. The viscoelastic 
behavior of softer cores is not considered in the present work. A parametric assessment on the 
influence of different geometrical and material factors is carried out.  

2. Materials and Methods 

2.1. Composite Materials and Constitutive Relations 

A laminated composite can be constructed by superposing layers of materials, which can be for 
example, orthotropic fibrous composite materials or isotropic materials, among other possibilities. 
Underlying these layers superposition, it is considered that a set of assumptions is verified, namely, 
that there exist a perfect adhesion among constituent phases and between adjacent layers, the 
inexistence of voids, the continuity of displacements and the validity of a linear elastic regime, in the 
structure operating conditions. In Figure 1, we can observe a typical stacking sequence of laminae, 
each possessing a different fiber orientation.  

 

Figure 1. Schematic representation of layers stacking sequence. 
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In the present study, one considers a layerwise formulation which assumes negligible the 
transverse normal deformations, within each layer, thus leading to a constant transverse  
displacement [27,28]. Neglecting as well the transverse normal stress one has for an orthotropic k-th 
layer, the stress-strain relations in the material coordinate system (1, 2, 3): 
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where the subscripts 1 and 2 denote respectively the directions of the fiber and the in-plane normal to 

fiber, and the subscript 3 is associated to the ply transverse normal direction. ܳ௜௝
ሺ௞ሻ, represent the 

reduced elastic stiffness coefficients of the k-th layer. As each layer may have a different fiber 
orientation, as we can observe in Figures 1 and 2, it is thus necessary to carry out a transformation 
procedure so that the necessary analyses involving the whole laminate can be performed.  

 

Figure 2. Schematic representation of material and laminate coordinate systems. 

The angle θ that characterizes the fiber orientation angle is measured between the positive 
senses of directions 1 and x. By performing the adequate coordinate transformation the constitutive 

relations in the laminate xyz coordinate system is finally given as in [29], where തܳ௜௝
ሺ௞ሻ represents 

the transformed reduced elastic stiffness coefficients, associated to each k-th layer.  
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The mentioned transformation is carried out layer by layer, being not needed if for example, a 
specific layer has coinciding axes 1 − x (positive senses) or if one uses a material that can be 
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considered to be isotropic. Usually, when considering an ESL approach and using a first order shear 
deformation theory, one uses shear correction factors to overcome the through-thickness constant 
prediction of the transverse shear stresses and thus to approximate the model response to the 3D 
elasticity distributions. The present LW model considers the FSDT assumptions within each layer, 
yielding to a kinematics description wherein the rotations at each layer, are independent. Under these 
conditions, and according to some research works [25–28], the use of the shear correction factors is 
not considered. However to enable a comparative study, in the present study one has considered in 
some cases both approaches, i.e., the use of a shear correction factor equal to 1 and equal to a 
commonly used value, 5/6. 

2.2. Layerwise Theory and Equilibrium Equations 

In the present study we have considered that the deformation kinematics of the layered plate 
would be described through a layerwise approach wherein each of the layers response is based on the 
first-order shear deformation theory assumptions and by imposing the continuity of displacements at 
the layer’s interfaces. It is relevant to note that the stresses that result from the constitutive relation 
(Eqn. 2) may not satisfy the continuity of tractions across these interfaces. However the deviations 
introduced by this approximation is considered acceptable, as reported by other researchers [27,28]. 
Similar approaches have been used in the context of the dynamic analysis of viscoelastic sandwich 
beams and plates, by Barkanov et al. [25] and Araújo et al. [26]. The prediction of the transverse 
shear stresses within each layer yields a constant value, according to the constitutive relation, thus 
leading to a stepwise distribution profile. However, a continuous distribution may be obtained if one 
uses the elasticity equilibrium equations in a post-processing phase. To illustrate the specific case of 
a three-layered configuration, independently of the nature of the constituent materials, we present in 
Figure 3, a schematic representation of the kinematics of the present approach.  

 

Figure 3. Schematic representation of the deformation kinematics. 

The major reason for the use of the first order shear deformation theory is related to its minor 
computational cost when compared to other approaches. If one considers higher order displacement 
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fields in layerwise or equivalent single layer theories, the dimension of the problem can become 
significantly higher. If one would aim to proceed with a failure analysis, for instances, it would be at 
any time possible, in a post-processing stage, to calculate the transverse normal and shear stresses via 
the equilibrium equations. Considering this three-layered configuration, and according to the referred 
kinematics assumptions, the middle layer (core) displacement components, ݑሺଶሻ ሺଶሻݒ , ሺଶሻݓ , , 
respectively along the ,ݔ	,ݕ	ݖ directions, are described as:  

,ݔሺଶሻሺݑ ,ݕ ,ݖ ሻݐ ൌ ,ݔ଴ሺݑ ,ݕ ሻݐ ൅ ௫ߠሺଶሻݖ
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where ݑ  and ݒ  are the in-plane displacements at any point characterized by the coordinates 
ሺݔ, ,ݕ ,ݖ  ଴ denote the in-plane displacements of a point inݒ ଴ andݑ ;ݐ ሻ at a generic time instantݐ

the plate mid-plane ሺݔ, ,ݕ 0, ௫ߠ is the transverse deflection; and ݓ ;ሻݐ
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of the normals to the core layer mid-plane about the ݕ  and ݔ  axes, respectively. After the 
imposition of displacements’ continuity at the layers’ interfaces, the displacement fields for the upper 
(1) and lower (3) layers, are respectively given as: 
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where ݄௞ is the ݇th-layer thickness and ݖሺ௞ሻ ∈ ሾെ݄௞/2, ݄௞/2ሿ are the ݇th-layer ݖ coordinates. 
Considering the kinematical relations from the elasticity for small deformations, we obtain for a 
generic ݄݇ݐ layer (omitting time and spatial coordinates’ dependency): 
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The bending (superscript b) and the membrane (superscript m) components are expressed as: 
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and the membrane-bending (superscript mb) components for outer layers are respectively given by: 
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 (9)

The equilibrium equations that will enable to perform the static and free vibrations of the 
laminated or sandwich composite plate, can be obtained through Hamilton principle [29] which can 
be written as: 

න ሺܷߜ െ ܸߜ ൅ ݐሻܹ݀ߜ ൌ 0
௧ଵ

௧଴
 (10)

where ܷ, ܸ	,ܹ	 represent respectively the elastic strain energy, the kinetic energy and the work 
done by external forces applied to the system. Each of these parameters is generically given by: 

ܷߜ ൌ ׬ ሺ்࣌ࣕߜሻ݀Ωஐ ܸߜ   ;    ൌ ׬ ሺࢗߜߩሶ ሶ்ࢗ ሻ݀Ωஐ ܹߜ   ;    ൌ ׬ ሺࢗߜ࢖ሻ݀ܣ୅  (11)

with Ω, A being the volume of the plate and the loading application area; ϵ, σ are the generalized 
strains and stresses’ vectors. The density and the pressure loading are respectively represented by ρ 
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and 	p. After the constitution of the element matrices and vectors, and their subsequent assembly 
considering the discretized domain, we can write the equilibrium equation: 

ࢗࡷ ൅ࢗࡹሷ ൌ (12) ࡲ

where ࡷ, ,ࡹ  represent respectively the global elastic stiffness and mass matrices and the global 	ࡲ
load vector, and ࢗ, ሷࢗ  stand for the generalized displacements and accelerations vectors. The vector of 
the generalized degrees of freedom is then given as: 

்ݍ ൌ ሾݑ଴, ,଴ݒ	 ,଴ݓ	 ,௫ଵߠ	 ,௬ଵߠ ,௫ଶߠ ,௬ଶߠ ,௫ଷߠ ௬ଷሿ (13)ߠ

Assuming free harmonic vibrations we’ll have: 

൫ࡷ െ ߱௜
ଶࡹ൯࢏ࢗ ൌ 0 (14)

with ω୧  representing the ith natural frequency associated to the ith vibration mode q୧. For a linear 
static problem, the equilibrium equation becomes reduced to: 

ࢗࡷ ൌ (15) ࡲ

In any case, these equilibrium equations are solved only after the imposition of the boundary 
conditions associated to the problem under study.  

3. Results and Discussion 

The laminated plates considered in the studies carried out possess a three-layered configuration 
and comprise two main types of plates: a first one where the outer layers are made of orthotropic 
composite layers and the core is an isotropic foam. In the second group of plates, all the layers are 
from orthotropic composite materials. The composite layers consider a 60% volume fraction of long 
reinforcement fibers (carbon or glass) embedded in an epoxy resin. Tables 1 and 2, present the 
properties used in the present study. 

Table 1. Material properties of composites. 

Vf = 60% E1 (GPa) E2 (GPa) G12 (GPa) υ12 ߩ (kg/m3) 

Glass-Epoxy 45.0 12.0 4.5 0.3 2080 

Carbon-Epoxy 134.0 7.0 4.2 0.25 1530 

Table 2. Material properties of foams. 

 H35 H45 H60 H80 H100 H130 H160 H200 H250

Young’s modulus (MPa) 49 55 75 95 130 175 205 250 320 

Poisson’s ratio 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Density (kg/m3) 38 48 60 80 100 130 160 200 250 

Concerning to the materials presented in Table 2, which properties were consulted in the 
manufacturer site [30] and more specifically to the softness of the core, it is important to say that to 
obtain a more effective prediction of the response of a soft core sandwich it would be advisable to 
adopt a more adequate approach that takes into account its viscoelastic behavior. The study of soft 
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core sandwich structures constitutes an investigation field where others researchers have been 
carrying out different studies. Among others we may refer Daya and Pottier-Ferry [24],    
Barkanov et al. [24] and Araújo et al. [26]. Considering however just the elastic behavior, a higher 
order methodology may be an approach to consider in particular if the aspect ratio of the plates is not 
high. The transverse displacement and the stress components determined in the different case studies, 
as well as the natural frequencies, are presented in a non-dimensional form using the following 
multipliers:  
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(16)

The points where these quantities are assessed, as well as its plate spatial correspondence can be 
respectively exemplified in Figure 4. In Table 3, the presented coordinates are exemplified for a 
situation where all the layers have equal thickness. 

 

Figure 4. Schematic representation of evaluation points, through plate thickness (h). 

Table 3. Points of deflection and stresses evaluation (illustrated xz plane). 
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The present layerwise model was implemented using a Lagrange quadrilateral plate finite 
element model with nine nodes, each having nine degrees of freedom, according to equation 13. The 
discretization used comprised a 12 ൈ 12 plate elements mesh, unless otherwise stated. In this work, 
one considers aspect ratios ranging from five to twenty. As it would be possible to observe, the 
results obtained, allow to conclude that thicker composites can still be analyzed using this theory. If 
one considers thinner laminates, a simpler theory may be more adequate.  

3.1. Validation Studies 

Two first case studies were considered in the present work, to validate the results obtained using 
the layerwise model taking as reference the results obtained by other authors. The first case is 
devoted to the static analysis of a sandwich plate, and the second case is focused on the 
characterization of the eight first natural frequencies of a laminated composite. The discretization 
considered for the studies carried out was a 12 ൈ 12 mesh. 

3.1.1. Sandwich Plate Under Uniform Load 

In this first case, one considered the static analysis of a simply supported square sandwich plate 
having skin thicknesses of 0.1	h	each, and a core thickness equal to 0.8	h, being (h) the total 
thickness. The plate is submitted to a uniformly distributed transverse load. The elastic stiffness 
coefficients of the sandwich core are expressed in the matrix, തܳ௖௢௥௘, as [31]: 

തܳ௖௢௥௘ ൌ

ۏ
ێ
ێ
ێ
ۍ
0.999781 0.231192 0 0 0
0.231192 0.524886 0 0 0

0 0 0.62931 0 0
0 0 0 0.266810 0
0 0 0 0 ے0.159914

ۑ
ۑ
ۑ
ې

  

The skins’ elastic stiffness coefficients are related to the core coefficients by a factor R as 
follows: 

തܳ௦௞௜௡ ൌ ܴ തܳ௖௢௥௘

The results obtained, namely the transverse displacements and the stresses are presented in a 
non-dimensional form using the multipliers,  
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In Tables 4–6 one summarizes the transverse displacements and the stresses in non-dimensional 
form, for different ratios (R) between the elastic stiffness coefficients of the skins and the ones of the 
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core. The present results are denoted in Tables 4–7 by Q4 and Q9 to denote the two quadrilateral 
bilinear and biquadratic finite elements used. 

As it is possible to conclude, the present results show a general good agreement with the 
reference solutions. The results obtained with the LW-Q9 model are in good agreement with the ones 
obtained by Ferreira et al. [27] which used a LW theory and radial basis functions discretization. 
Although in the present work, one only presents results obtained with nine-node elements, the results 
obtained with the four-node element implement can be observed also in these tables. A good 
agreement is found with Ferreira [32] solution which used a bilinear quadrilateral finite element 
based on a simplified formulation where the membrane degrees of freedom were neglected. 
Considering a shear correction factor of 5/6, the results will be the ones presented in Table 7. 

Table 4. Non-dimensional deflection and stress components (R = 5). 

Models ݓഥ ത௬ଷ ߬̅௫௭ଵߪ ത௬ଶߪ ത௬ଵߪ ത௫ଷߪ ത௫ଶߪ ത௫ଵߪ   ߬̅௫௭ଶ  

HSDT [4] 256.13 62.38 46.91 9.382 38.93 30.33 6.065 3.089 2.566

Exact [31] 258.97 60.353 46.623 9.34 38.491 30.097 6.161 4.3641 3.2675

Ferreira [32] 258.834 60.088 46.372 9.274 - - - 3.880 1.731

Ferreira [27] 258.180 60.0262 46.3926 9.2785 38.3644 30.0294 6.0059 4.095 2.0418

Q4, (4 × 4) 259.5352 55.923 42.7778 8.5556 36.8245 28.6415 5.7283 2.9135 1.2510

Q4, (10 × 10) 258.8336 59.5704 45.9692 9.1938 38.2179 29.8914 5.9783 3.6289 1.5831

Q4, (12 × 12) 258.8424 59.8026 46.1183 9.2237 38.3128 29.9483 5.9897 3.7122 1.6286

Q4, (20 × 20) 258.8342 60.0881 46.3718 9.2744 38.4267 30.0523 6.0105 3.8804 1.7314

Q9, (4 × 4) 258.5895 60.3915 46.942 9.3884 38.6598 30.4271 6.0854 4.0522 1.8705

Q9, (10 × 10) 258.8281 60.2736 46.556 9.3112 38.4985 30.127 6.0254 4.0669 1.9366

Q9, (12 × 12) 258.8314 60.2689 46.5404 9.3081 38.4972 30.1202 6.024 4.0719 1.952

Q9, (20 × 20) 258.8342 60.2607 46.5197 9.3039 38.4959 30.1124 6.0225 4.0841 1.9826

Table 5. Non-dimensional deflection and stress components (R = 10). 

Models ݓഥ ത௬ଷ ߬̅௫௭ଵߪ ത௬ଶߪ ത௬ଵߪ ത௫ଷߪ ത௫ଶߪ ത௫ଵߪ   ߬̅௫௭ଶ  

HSDT [4] 152.33 64.65 51.31 5.131 42.83 33.97 3.397 3.147 2.587

Exact [31] 159.38 65.332 48.857 4.903 43.566 33.413 3.5 4.0959 3.5154

Ferreira [32] 159.476 65.047 48.576 4.858 - - - 3.792 1.928

Ferreira [27] 158.9117 64.9927 48.6009 4.8601 43.4907 33.4089 3.3409 3.9803 2.3325

Q4, (4 × 4) 162.0181 60.543 44.4486 4.4449 41.9587 31.8772 3.1877 2.8323 1.3629

Q4, (10 × 10) 159.6822 64.4631 48.1314 4.8131 43.3636 33.2797 3.328 3.5483 1.747

Q4, (12 × 12) 159.6097 64.7366 48.2823 4.8282 43.4708 33.3274 3.3327 3.6295 1.8016

Q4, (20 × 20) 159.4757 65.0473 48.5758 4.8576 43.5805 33.4408 3.3441 3.7918 1.9279

Q9, (4 × 4) 159.3758 65.4971 49.2619 4.9262 43.932 33.9226 3.3923 3.8726 2.007

Q9, (10 × 10) 159.4047 65.2546 48.782 4.8782 43.6564 33.5212 3.3521 3.9533 2.1755

Q9, (12 × 12) 159.4053 65.2476 48.7654 4.8765 43.6535 33.5134 3.3513 3.9621 2.2073

Q9, (20 × 20) 159.4058 65.2373 48.7433 4.8743 43.6505 33.5042 3.3504 3.9779 2.2689
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Table 6. Non-dimensional deflection and stress components (R = 15). 

Models ݓഥ ത௬ଷ ߬̅௫௭ଵߪ ത௬ଶߪ ത௬ଵߪ ത௫ଷߪ ത௫ଶߪ ത௫ଵߪ   ߬̅௫௭ଶ  

HSDT [4] 110.43 66.62 51.97 3.465 44.92 35.41 2.361 3.035 2.691

Exact [31] 121.72 66.787 48.299 3.238 46.424 34.955 2.494 3.9638 3.5768

Ferreira [32] 121.871 66.490 48.000 3.200 - - - 3.730 2.019

Ferreira [27] 121.3474 66.4362 48.0104 3.2007 46.3849 34.9650 2.331 3.9024 2.4811

Q4, (4 × 4) 125.0593 61.9463 43.5915 2.9061 44.8984 33.3497 2.2233 2.7739 1.4016

Q4, (10 × 10) 122.1499 65.8759 47.5395 3.1693 46.2623 34.8631 2.3242 3.4912 1.8158

Q4, (12 × 12) 122.0484 66.1709 47.6863 3.1791 46.3774 34.9007 2.3267 3.5712 1.8766

Q4, (20 × 20) 121.8709 66.4903 48.0001 3.2 46.4797 35.0191 2.3346 3.7297 2.0192

Q9, (4 × 4) 121.8099 67.0141 48.6933 3.2462 46.8978 35.5358 2.3691 3.7749 2.0626

Q9, (10 × 10) 121.7767 66.7069 48.2131 3.2142 46.5567 35.1012 2.3401 3.8804 2.3078

Q9, (12 × 12) 121.7766 66.6983 48.1976 3.2132 46.5525 35.0931 2.3395 3.8899 2.3516

Q9, (20 × 20) 121.7765 66.6866 48.1768 3.2118 46.5478 35.0835 2.3389 3.9054 2.433

Table 7. Non-dimensional deflection and stress components (k = 5/6). 

Models ݓഥ ത௬ଷ ߬̅௫௭ଵߪ ത௬ଶߪ ത௬ଵߪ ത௫ଷߪ ത௫ଶߪ ത௫ଵߪ   ߬̅௫௭ଶ  

R = 5          

Exact [31] 258.97 60.353 46.623 9.34 38.491 30.097 6.161 4.3641 3.2675 

Ferreira [32] 258.834 60.088 46.372 9.274 - - - 3.880 1.731 

Ferreira [27] 258.180 60.0262 46.3926 9.2785 38.3644 30.0294 6.0059 4.095 2.0418 

Q4 258.8342 60.0881 46.3718 9.2744 38.4267 30.0523 6.0105 3.8804 1.7314 

Q9 258.8342 60.2607 46.5197 9.3039 38.4959 30.1124 6.0225 4.0841 1.9826 

Q4, k = 5/6 267.1507 59.9246 45.9070 9.1814 38.7909 30.2055 6.0411 3.8675 1.7430 

Q9, k = 5/6 267.1177 60.0977 46.0558 9.2112 38.8587 30.2646 6.0529 4.0667 1.9980 

R = 10          

Exact [31] 159.38 65.332 48.857 4.903 43.566 33.413 3.5 4.0959 3.5154 

Ferreira [32] 159.476 65.047 48.576 4.858 - - - 3.792 1.928 

Ferreira [27] 158.9117 64.9927 48.6009 4.8601 43.4907 33.4089 3.3409 3.9803 2.3325 

Q4 159.4757 65.0473 48.5758 4.8576 43.5805 33.4408 3.3441 3.7918 1.9279 

Q9 159.4058 65.2373 48.7433 4.8743 43.6505 33.5042 3.3504 3.9779 2.2689 

Q4, k = 5/6 167.4872 64.7566 47.6721 4.7672 44.2484 33.6886 3.3689 3.7697 1.9447 

Q9, k = 5/6 167.3863 64.9468 47.8409 4.7841 44.3164 33.7511 3.3751 3.9513 2.2977 

R = 15          

Exact [31] 121.72 66.787 48.299 3.238 46.424 34.955 2.494 3.9638 3.5768 

Ferreira [32] 121.871 66.490 48.000 3.200 - - - 3.730 2.019 

Ferreira [27] 121.3474 66.4362 48.0104 3.2007 46.3849 34.9650 2.331 3.9024 2.4811 

Q4 121.8709 66.4903 48.0001 3.2 46.4797 35.0191 2.3346 3.7297 2.0192 

Q9 121.7765 66.6866 48.1768 3.2118 46.5478 35.0835 2.3389 3.9054 2.433 

Q4, k=5/6 129.7105 66.1127 46.7050 3.1137 47.4140 35.3295 2.3553 3.6995 2.0400 

Q9, k=5/6 129.5865 66.3085 46.8830 3.1255 47.4803 35.3936 2.3596 3.8704 2.4703 
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As it is possible to conclude, and as expected, the use of a shear correction equal to 5/6, 
produces alterations in the different quantities presented. In the present cases, the agreement with the 
reference solutions is better when k = 1. 

3.1.2. Fundamental Frequencies of Laminated Plates with Different Stiffness Ratios 

This second validation study, considers a cross-ply simply supported laminated plate with the 
following stacking sequence [0º/90º/90º/0º]. The thickness-to-span ratio ݄/ܽ  is 0.2 and the 
thickness of all the plies is equal. The material properties of the composite are ܧଵ ⁄ଶܧ ൌ 10, 20, 30,
ଵଶܩ ;	40 ൌ ଵଷܩ ൌ ଶଷܩ ;ଶܧ0.6 ൌ ଵଶߥ ;ଶܧ0.5 ൌ 0.25. Table 8 presents the fundamental frequency in 

a non-dimensional form using the multiplier ഥ߱ ൌ ఠ௔మ

௛ ට
ఘ

ாమ
. 

From Table 8 it is possible to conclude on the good agreement with the reference results for the 
different stiffness ratios considered. As we may conclude, in these cases the use of a unit shear 
correction factor yields a better agreement when compared to the use of a 5/6 shear correction factor. 

Table 8. Non-dimensional fundamental frequency. Different stiffness ratios. 

k Method 10 20 30 40 

1 Liew et al. [33] 8.2924 9.5613 10.320 10.849 

Khdeir et al. [34] 8.2982 9.5671 10.326 10.854 

Ferreira et al. [28] 8.5846 9.8384 10.5695 10.0649 

1 Present (11 × 11) 8.4255 9.5735 10.2072 10.62 

Present (15 × 15) 8.4244 9.5724 10.2063 10.6192 

Present (19 × 19) 8.4241 9.5722 10.2061 10.619 

5/6 Present (11 × 11) 8.14 9.1314 9.6646 10.0078 

Present (15 × 15) 8.1389 9.1305 9.6638 10.0071 

Present (19 × 19) 8.1387 9.1303 9.6636 10.0069 

3.1.3. Natural Frequencies of a Composite Laminated Plate 

In this second validation study, one has considered a simply supported square laminated plate 
with the following stacking sequence [0º/90º/90º/0º]. The side-to-thickness ratio ܽ/݄ is set to 10 
and the thickness of each ply is ݄/3. The material properties of the composite are: ܧଵ ൌ  ;	ܽܲܯ	173
ଶܧ ൌ ଵଶܩ ;ܽܲܯ	33.1 ൌ ଵଷܩ ;ܽܲܯ	9.38 ൌ ଶଷܩ ;ܽܲܯ	8.27 ൌ ଵଶߥ ;ܽܲܯ	3.24 ൌ ଵଷߥ ;0.036 ൌ 0.25; 
ଶଷߥ ൌ 0.171. For illustrative purposes, we present in Figure 5 the corresponding first eight vibration 
modes. 
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Figure 5. First eight vibration modes of the laminated plate. 

The results obtained in the free vibrations analyses carried out, are presented in Table 9. 

Table 9. Non-dimensional natural frequencies for the laminate plate. 

Method (1, 1) (1, 2) (2, 1) (2, 2) (1, 3) (2, 3) (3, 1) (3, 2) 

Exact [35] 0.0672 0.1281 0.1722 0.2080 - - - - 

Nosier et al. [22] 0.0672 0.1282 0.1723 0.2081 - - - - 

Ferreira et al. [27] 0.0681 0.1322 0.1762 0.2150 0.2376 0.2954 0.3009 0.3288

Present, (4 × 4) 0.0687 0.1277 0.1829 0.2166 0.2263 0.2882 0.3175 0.3397

Present, (10 × 10) 0.0687 0.127 0.1817 0.2155 0.2195 0.2836 0.3099 0.3286

Present, (12 × 12) 0.0687 0.1269 0.1817 0.2155 0.2194 0.2836 0.3098 0.3281

Present, (20 × 20) 0.0687 0.1269 0.1817 0.2155 0.2193 0.2835 0.3097 0.3277

The frequencies in Table 9 are non-dimensionalized using the corresponding multiplier in    
Eqn. 16. We can also observe a general good agreement with the reference results.  

3.2. Case Studies 

3.2.1. Influence of Core on the Static and Free Vibrations of a Sandwich Plate with Composite 
Skins 

Following the previous validation studies, we considered a case study where the inner layer, the 
core, was made from different density polyvinyl chloride (PVC) foams [30]. This configuration is 
able to present a favorable lightweight solution, namely when the structure weight can be a constraint. 
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To this purpose one has studied the effect of considering different foams with different thicknesses. 
The outer layers, were assumed to be made of unidirectional carbon-epoxy or glass-epoxy composite. 
The material properties are presented in Tables 1 and 2, and an aspect ratio a/h = 10 was considered. 
The plates were subjected to a uniformly distributed transverse load (1 Pa). The maximum deflection 
and the first five natural frequencies for a sandwich configuration with carbon-epoxy skins and a 
core with 10 mm and 15 mm thickness are respectively presented in Tables 10 and 11, in a 
non-dimensional form. The thickness of each skin is 2 mm, in both cases. 

Table 10. Non-dimensional deflection and frequencies. Carbon-epoxy skins, 10 mm core. 

Core Id. Material Id. Deflection 
Vibration modes 

(1, 1) (2, 1) (1, 2) (2, 2) (3, 1) 

1 H35 2.35E−07 0.0303 0.0489 0.0619 0.0723 0.0736 

2 H45 2.16E−07 0.0316 0.0511 0.064 0.0758 0.0765 

3 H60 1.72E−07 0.0354 0.0576 0.0707 0.085 0.0859 

4 H80 1.45E−07 0.0385 0.0629 0.0767 0.0924 0.0944 

5 H100 1.16E−07 0.0431 0.0703 0.0858 0.1034 0.1067 

6 H130 9.43E−08 0.0478 0.0777 0.0959 0.1153 0.1193 

7 H160 8.47E−08 0.0504 0.0817 0.1019 0.1222 0.1263 

8 H200 7.41E−08 0.0539 0.0869 0.1101 0.1314 0.1354 

9 H250 6.32E−08 0.0584 0.0934 0.1213 0.1438 0.1469 

From Table 10, we see that as we go from the H35 to the H250 foam core, the maximum 
deflection decreases, which is expected as the foams provide an increasing stiffness to the plate. 
Concerning to the frequencies we observe an opposite trend as expected. Table 11 presents now a 
similar set of studies, considering a thicker core. 

Table 11. Non-dimensional deflection and frequencies. Carbon-epoxy skins, 15 mm core. 

Core Id. Material Id. Deflection 
Vibration modes 

(1, 1) (2, 1) (1, 2) (2, 2) (3, 1) 

1 H35 2.64E−07 0.0285 0.0465 0.0541 0.0659 0.0688 

2 H45 2.41E−07 0.0298 0.0487 0.0565 0.0689 0.0722 

3 H60 1.91E−07 0.0335 0.0550 0.0639 0.0779 0.0822 

4 H80 1.60E−07 0.0366 0.0600 0.0702 0.0856 0.0906 

5 H100 1.27E−07 0.0411 0.0671 0.0799 0.0969 0.1024 

6 H130 1.03E−07 0.0456 0.0740 0.0903 0.1089 0.1144 

7 H160 9.28E−08 0.0481 0.0778 0.0965 0.1158 0.1210 

8 H200 8.13E−08 0.0514 0.0826 0.1048 0.1250 0.1295 

9 H250 6.94E−08 0.0557 0.0887 0.1161 0.1373 0.1403 

Again we observe that the maximum deflection decreases for the higher density cores 
configurations, and the frequencies increase. We see additionally that in this last situation, where the 
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core is thicker but the skins have the same thickness, we achieve a less stiff solution, which would be 
expectable. 

The identification of the core material in the horizontal axis of the graphics, correspond to the 
core identification in Tables 10 and 11, CE and GE denotes the carbon-epoxy and glass-epoxy skins. 

 

Figure 6. Non-dimensional maximum deflection of sandwich plates. 

 

Figure 7. Non-dimensional fundamental frequency of sandwich plates. 

Similar trends are observed if one considers glass-epoxy skins, as depicted in Figures 6 and 7. 
In addition to the stiffening effect provided by the two types of skins at different distances from the 
middle-plane, it is also worth of mention the evolution of the Young’s modulus and the density for 
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the different cores configurations considered. We may conclude from the material data (Table 2) that 
we have a greater gradient in the case of the Young’s modulus, although for the second core, the 
evolution rate of the Young’s modulus is lower. Considering these aspects, the static and dynamic 
response of the sandwich plate in the neighborhood of this second configuration becomes clearer.  

Also concerning to the remaining response evolution, the evolution rate of the Young’s modulus 
slows down again in the case of the seventh core, but not the density one. This is again visible in the 
responses (Figures 6 and 7). Globally, we can conclude that despite the proximity perception of the 
curves which may be affected by the magnitude of the different scales’ axes; the thicker these cores 
are, the greater the deflection and the minor the fundamental frequency of the sandwich plate. 
Moreover, when we consider a growing density core, regardless its thickness, the fundamental 
frequency increases and the deflection decreases. 

3.2.2. Influence of Geometric Ratios on the Static and Free Vibrations of Three-Layered 
Composite Plate 

In order to characterize the influence of plate aspect ratio (a/h) in its mechanical response, we 
considered a unit edge length, simply supported square laminated plate [0º/90º/0º], subjected to a 
uniformly distributed transverse load (1 Pa) and three side-to-thickness ratios (a/h ൌ	 5, 10 and 20). 
The material properties of the carbon-epoxy composite used in the plate are listed in Table 1, and the 
transverse displacement and the stress components are presented in non-dimensional form. 

In Table 12 we can observe the non-dimensional transverse displacement and stresses for the 
three aspect ratios. Additionally we can also see how the plate behaves if for each a/h we consider 
the variation of the skins thicknesses in an equal manner. We can conclude that as the aspect ratio 
(a/h) increases, the plate goes thinner and the non-dimensional transverse displacement also 
increases. 

Table 12. Non-dimensional transverse deflection and stresses vs. ratio a/h. 

a/h hk ݓഥ ത௬ଷ ߬̅௫௭ଵߪ ത௬ଶߪ ത௬ଵߪ ത௫ଷߪ ത௫ଶߪ ത௫ଵߪ   ߬̅௫௭ଶ  

5 h/6 1.48E−09 19.5679 13.0317 0.8189 1.3064 0.7513 11.3281 2.4376 1.2329

h/5 1.50E−09 18.5382 11.2410 0.7236 1.3899 0.7205 11.1640 2.6190 1.3573

h/4 1.57E−09 17.5487 9.1203 0.6083 1.5917 0.6740 10.7743 2.8794 1.5397

h/3 1.72E−09 16.7142 6.2640 0.4399 1.9373 0.5558 9.1840 3.2748 1.8389

10 h/6 1.50E−08 78.2689 52.1422 3.3108 4.8995 3.1501 48.0947 4.8990 2.4775

h/5 1.51E−08 76.6934 46.1283 2.9489 4.9249 2.8708 44.1609 5.3622 2.7893

h/4 1.53E−08 75.1630 37.9595 2.4446 4.9481 2.4378 37.7885 5.9820 3.2284

h/3 1.59E−08 73.8013 25.3755 1.6389 5.4659 1.6997 27.4375 6.8049 3.8884

20 h/6 2.05E−07 313.4683 208.9234 13.3188 19.4379 12.8451 196.9901 9.8338 4.9746

h/5 2.05E−07 311.7869 187.1772 11.9098 19.1397 11.4128 174.6566 10.8530 5.6574

h/4 2.05E−07 309.2712 155.0268 9.8104 18.4756 9.2265 141.4401 12.1659 6.5958

h/3 2.06E−07 304.6326 102.3482 6.3685 19.2816 6.2762 102.4880 13.7655 7.9295
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A similar response pattern is visible in the case of the stresses. For a specific a/h when we 
consider the thickening of the skins (hk) we can conclude that the increasing trend also occurs for the 
transverse displacement. In the case of the evolution of stresses, it shows a similar consistent trend.  

In Table 13 it is also possible to see the first four non-dimensional natural frequencies, for the 
same aspect ratios and skins’ thicknesses. 

Table 13. Non-dimensional natural frequencies vs. aspect ratio a/h. 

a/h hk (1, 1) (2, 1) (1, 2) (2, 2) 

5 h/6 0.3811 0.6345 0.8080 0.9135 

h/5 0.3774 0.6037 0.8158 0.8883 

h/4 0.3694 0.5804 0.7996 0.8661 

h/3 0.3535 0.5501 0.7645 0.8537 

10 h/6 0.1216 0.2339 0.3189 0.3812 

h/5 0.1211 0.2222 0.3223 0.3631 

h/4 0.1199 0.2054 0.3228 0.3365 

h/3 0.1172 0.1828 0.3005 0.3164 

20 h/6 0.0331 0.0725 0.0993 0.1216 

h/5 0.0331 0.0671 0.1024 0.1211 

h/4 0.0330 0.0600 0.1052 0.1090 

h/3 0.0328 0.0513 0.0888 0.1067 

Regarding the natural frequencies, it is possible to see that as the aspect ratio increases, the 
natural frequencies decrease. This pattern trend is also visible when the thickness of the middle layer 
decreases. 

3.2.3. Influence of Fiber Orientation on the Static and Free Vibrations of Three-Layered 
Composite Plate  

To characterize the effect of the fibers’ orientations on the static and free vibration behavior of 
the previous plates, we carried out another study. To this purpose we have considered three types of 
laminates, which stacking sequences may be summarized as [θº/0º/θº], [−θº/0º/θº] and [−θº/90º/θº]. 
The material properties of the composite and the aspect ratios considered were the same of the 
previous case study and the transverse displacement and the stress components are again presented in 
a non-dimensional form. The results obtained are presented in Tables 14 to 15. 

From Table 14 it is possible to conclude that angle-ply and cross-ply three-layered laminates 
perform more conservatively specially for thick and moderately thick laminates. The results obtained 
for the stresses’ components are in accordance with this. 

The natural frequencies in Table 15 present a consistent trend with the Table 14 results. 
When the outer plies do not follow the same unidirectional angle of the core, the fundamental 

frequency, as well as the other higher order frequencies, becomes higher, being higher in the case of 
the 45º outer plies’ laminate. Again this effect is more significant for thicker plates. From these 
results, one may conclude that the better stacking sequence concerning the minimum transverse 
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deformation and the maximum fundamental frequency is presented the [45º/0º/45º] laminate. In 
Table 16, we can now observe the static response of the plates that possess a symmetric orientation 
angle in the outer layers. 

Table 14. Non-dimensional deflection and stress components for the [θº/0º/θº] laminates. 

a/h 
Stacking 

sequence 

ഥݓ ത௬ଷ ߬̅௫௭ଵߪ ത௬ଶߪ ത௬ଵߪ ത௫ଷߪ ത௫ଶߪ ത௫ଵߪ   ߬̅௫௭ଶ  

5 [0º/0º/0º] 2.14E−09 18.8606 2.2167 2.2167 2.5442 0.7787 0.7787 3.0414 1.9686

[30º/0º/30º] 1.70E−09 12.0237 3.3023 4.3633 5.5495 1.3426 0.5884 2.5117 1.6649

[45º/0º/45º] 1.53E−09 8.1046 2.3263 3.4907 8.3541 2.5853 0.5242 2.2195 1.4765

[60º/0º/60º] 1.56E−09 5.1650 1.1668 5.3923 12.4994 3.1178 0.4897 1.9449 1.1327

[90º/0º/90º] 1.72E−09 1.9373 0.5558 9.1840 16.7142 6.2640 0.4399 1.3839 0.6264

10 [0º/0º/0º] 1.78E−08 76.2657 20.5571 20.5571 6.5166 2.0940 2.0940 6.8372 3.9905

[30º/0º/30º] 1.60E−08 47.4375 12.7804 27.0856 19.6930 5.5572 2.1496 5.7971 3.3289

[45º/0º/45º] 1.50E−08 30.1627 8.2030 24.8592 30.6463 8.8301 2.3782 5.0787 2.9633

[60º/0º/60º] 1.53E−08 19.5482 5.9614 25.8571 48.5890 15.2072 2.3090 4.5459 2.2036

[90º/0º/90º] 1.59E−08 5.4659 1.6997 27.4375 73.8013 25.3755 1.6389 2.6868 0.9767

20 [0º/0º/0º] 2.11E−07 303.6790 96.2366 96.2366 21.9219 7.2265 7.2265 14.1760 7.8875

[30º/0º/30º] 2.06E−07 188.8223 59.9691 129.9897 75.9990 24.3419 8.2395 12.4625 6.7458

[45º/0º/45º] 1.98E−07 118.8191 37.7501 121.8943 119.3034 38.1318 9.3731 11.1544 6.2335

[60º/0º/60º] 2.03E−07 76.3067 24.8855 110.2294 189.6396 62.3118 8.8632 10.8669 4.5299

[90º/0º/90º] 2.06E−07 19.2816 6.2762 102.4880 304.6326 102.3482 6.3685 5.4941 1.7139

Table 15. Non-dimensional natural frequencies for the [θº/0º/θº] laminates. 

a/h Stacking sequence (1, 1) (2, 1) (1, 2) (2, 2) 

5 [0º/0º/0º] 0.3184 0.5296 0.6699 0.8151 

[30º/0º/30º] 0.3568 0.5996 0.7204 0.8591 

[45º/0º/45º] 0.3759 0.6251 0.7582 0.8795 

[60º/0º/60º] 0.3727 0.6052 0.7736 0.8715 

[90º/0º/90º] 0.3535 0.5501 0.7645 0.8537 

10 [0º/0º/0º] 0.1104 0.1660 0.2795 0.2838 

[30º/0º/30º] 0.1174 0.1997 0.2832 0.3055 

[45º/0º/45º] 0.1212 0.2137 0.2866 0.3167 

[60º/0º/60º] 0.1203 0.2082 0.2999 0.3166 

[90º/0º/90º] 0.1172 0.1828 0.3005 0.3164 

20 [0º/0º/0º] 0.0321 0.0464 0.0768 0.1016 

[30º/0º/30º] 0.0329 0.0569 0.0900 0.0933 

[45º/0º/45º] 0.0336 0.0615 0.0900 0.0949 

[60º/0º/60º] 0.0332 0.0601 0.0949 0.0957 

[90º/0º/90º] 0.0328 0.0513 0.0888 0.1067 
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Table 16. Non-dimensional deflection and stress components for the [−θº/0º/θº] laminates. 

a/h 
Stacking 

sequence 

ഥݓ ത௬ଷ ߬̅௫௭ଵߪ ത௬ଶߪ ത௬ଵߪ ത௫ଷߪ ത௫ଶߪ ത௫ଵߪ   ߬̅௫௭ଶ  

5 [−30º/0º/30º] 1.36E−09 10.6046 2.2560 6.1698 4.5360 0.9185 1.0381 2.2967 1.6094

[−45º/0º/45º] 1.20E−09 7.2749 1.7780 3.3350 7.2567 1.8070 1.4519 1.9979 1.4215

[−60º/0º/60º] 1.31E−09 4.3180 1.2189 2.7765 10.6534 3.4639 1.3589 1.6848 1.1015

10 [−30º/0º/30º] 1.18E−08 39.0379 12.3092 21.9477 15.7575 4.7019 3.4992 5.0932 3.5805

[−45º/0º/45º] 1.05E−08 26.9461 10.9467 14.2479 27.2759 11.0915 5.0608 4.4088 3.0320

[−60º/0º/60º] 1.17E−08 15.6310 6.4519 14.7755 40.0437 18.3180 4.6169 3.7081 2.2366

20 [−30º/0º/30º] 1.43E−07 154.4374 52.6199 80.4305 59.8252 19.7365 11.5330 10.6298 9.9229

[−45º/0º/45º] 1.29E−07 107.6135 45.2929 59.0214 108.8538 45.8082 16.5644 9.1362 8.0365

[−60º/0º/60º] 1.44E−07 60.4675 25.1479 61.1296 158.0092 71.2223 15.0004 7.7873 5.3613

From Table 16 we see that when the angles of the outer layers are symmetrical, the laminate 
presents a stiffer behavior, when compared to the configuration in Table 14. One may also conclude 
that the better stacking sequence concerning the minimum transverse deflection is given by the 
[−45º/0º/45º] configuration. In Table 17, for the same laminates, we may conclude on a similar 
pattern in the opposite sense (maximum frequencies values) concerning the natural frequencies. 

Table 17. Non-dimensional natural frequencies for the [−θº/0º/θº] laminates. 

a/h Stacking sequence (1, 1) (2, 1) (1, 2) (2, 2) 

5 [−30º/0º/30º] 0.3976 0.6774 0.7444 0.9865 

[−45º/0º/45º] 0.4220 0.7353 0.7778 1.0323 

[−60º/0º/60º] 0.4050 0.6630 0.8061 0.9850 

10 [−30º/0º/30º] 0.1361 0.2424 0.2994 0.3875 

[−45º/0º/45º] 0.1441 0.2859 0.2915 0.4243 

[−60º/0º/60º] 0.1368 0.2458 0.3171 0.3849 

20 [−30º/0º/30º] 0.0393 0.0737 0.0999 0.1216 

[−45º/0º/45º] 0.0415 0.0906 0.0914 0.1458 

[−60º/0º/60º] 0.0392 0.0757 0.1013 0.1267 

Next, in Table 18, we present, the non-dimensional maximum deflection and stress components 
for the [−θº/90º/θº] lamination, where the lamination [−45º/90º/45º] shows to be more favorable, 
similarly with the results in Table 16, due to the equal thicknesses configuration considered. 

A similar conclusion concerning the more favorable stacking configuration, may be drawn for 
the fundamental frequency and higher ones, in Table 19. 
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Table 18. Non-dimensional deflection and stress components for the [−θº/90º/θº] laminates. 

a/h 
Stacking 

sequence 

ഥݓ ത௬ଷ ߬̅௫௭ଵߪ ത௬ଶߪ ത௬ଵߪ ത௫ଷߪ ത௫ଶߪ ത௫ଵߪ   ߬̅௫௭ଶ  

5 [0º/90º/0º] 1.72E−09 16.7142 6.2640 0.4399 1.9373 0.5558 9.1840 3.2748 1.8389

[−30º/90º/30º] 1.31E−09 10.6534 3.4639 1.3589 4.3180 1.2189 2.7765 2.6221 1.8097

[−45º/90º/45º] 1.20E−09 7.2567 1.8070 1.4519 7.2749 1.7780 3.3350 2.1744 1.6364

[−60º/90º/60º] 1.36E−09 4.5360 0.9185 1.0381 10.6046 2.2560 6.1698 1.7903 1.2796

10 [0º/90º/0º] 1.59E−08 73.8013 25.3755 1.6389 5.4659 1.6997 27.4375 6.8049 3.8884

[−30º/90º/30º] 1.17E−08 40.0437 18.3180 4.6169 15.6310 6.4519 14.7755 5.3656 4.9047

[−45º/90º/45º] 1.05E−08 27.2759 11.0915 5.0608 26.9461 10.9467 14.2479 4.4455 4.3578

[−60º/90º/60º] 1.18E−08 15.7575 4.7019 3.4992 39.0379 12.3092 21.9477 3.4952 2.9696

20 [0º/90º/0º] 2.06E−07 304.6326 102.3482 6.3685 19.2816 6.2762 102.4880 13.7655 7.9295

[−30º/90º/30º] 1.44E−07 158.0092 71.2223 15.0004 60.4675 25.1479 61.1296 10.8575 14.2759

[−45º/90º/45º] 1.29E−07 108.8538 45.8082 16.5644 107.6135 45.2929 59.0214 9.0321 12.3551

[−60º/90º/60º] 1.43E−07 59.8252 19.7365 11.5330 154.4374 52.6199 80.4305 7.0534 7.9900

Table 19. Non-dimensional natural frequencies for the [−θº/90º/θº] laminates. 

a/h Stacking sequence (1, 1) (2, 1) (1, 2) (2, 2) 

5 [0º/90º/0º] 0.3535 0.5501 0.7645 0.8537 

[−30º/90º/30º] 0.4050 0.6630 0.8061 0.9850 

[−45º/90º/45º] 0.4220 0.7353 0.7778 1.0323 

[−60º/90º/60º] 0.3976 0.6774 0.7444 0.9865 

10 [0º/90º/0º] 0.1172 0.1828 0.3005 0.3164 

[−30º/90º/30º] 0.1368 0.2458 0.3171 0.3849 

[−45º/90º/45º] 0.1441 0.2859 0.2915 0.4243 

[−60º/90º/60º] 0.1361 0.2424 0.2994 0.3875 

20 [0º/90º/0º] 0.0328 0.0513 0.0888 0.1067 

[−30º/90º/30º] 0.0392 0.0757 0.1013 0.1267 

[−45º/90º/45º] 0.0415 0.0906 0.0914 0.1458 

[−60º/90º/60º] 0.0393 0.0737 0.0999 0.1216 

In Figure 8, by comparing the three sets of the previous deflection results for an aspect ratio  
a/h = 10, we conclude that for the studied laminations, the solution [−45º/0º/45º] provide a stiffer 
plate. 

Similarly for the non-dimensional fundamental frequency, presented in Figure 9, we arrive at a 
similar conclusion, concerning the maximization of that frequency. 
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Figure 8. Non-dimensional transverse deflections. Different laminations. 

 

Figure 9. Non-dimensional fundamental frequencies. Different laminations. 

From the different configurations considered, it is possible to conclude that stacking sequences 
[−45º/90º/45º] and [−45º/0º/45º] would perform better.  

3.2.4. Influence of Fiber Material on the Static and Free Vibrations of Three-Layered Composite 
Plate 

In this case study, one intends to assess the static and free vibration behavior of three-layered 
plates, having the same matrix phase and different reinforcement fibers. To the purpose of this study 
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thickness in all layers. The boundary conditions, loading and the discretization used are identical to 
the ones in the previous case studies. The material properties used in the present case, are shown in 
Table 1. Again the results are presented in a non-dimensional form. The results obtained can be 
observed in Table 20 and in Figure 10 and 11, respectively for the static and free vibrations analyses. 
In Table 20, GE and CE represent respectively the glass-epoxy and the carbon-epoxy composite. 

Table 20. Non-dimensional deflection and stress components. 

Vf = 0.6 a/h ݓഥ ത௬ଷ ߬̅௫௭ଵߪ ത௬ଶߪ ത௬ଵߪ ത௫ଷߪ ത௫ଶߪ ത௫ଵߪ   ߬̅௫௭ଶ  

GE 5 2.01E−09 8.8353 2.0988 2.7273 6.0754 1.6864 1.3079 2.3512 1.4542

10 2.33E−08 35.5669 11.0048 14.5513 22.3650 7.1129 5.0361 5.0489 2.9002

20 3.36E−07 142.3576 46.6049 61.7848 87.3974 28.7909 19.9212 10.4751 5.8138

CE 5 1.70E−09 12.0237 3.3023 4.3633 5.5495 1.3426 0.5884 2.5117 1.6649

10 1.60E−08 47.4375 12.7804 27.0856 19.6930 5.5572 2.1496 5.7971 3.3289

20 2.06E−07 188.8223 59.9691 129.9897 75.9990 24.3419 8.2395 12.4625 6.7458

From Table 20 we conclude that, as expected the carbon-epoxy composite provides a stiffer 
plate when compared to the glass-epoxy composite laminated plate. As previously, as the aspect ratio 
increases, the deflection follows the same increasing trend. The stress components accompany an 
identical behavior to that one already observed.  

Concerning to Figure 10, it is important to note that the results are presented in a 
non-dimensional form (Eqn. 16). So, assuming that the linear elastic operating conditions of the 
structure would be not compromised, if we considered further increases in the aspect ratio, this 
doesn’t means that the frequencies would be the same, irrespective to the material nature. As 
expected, also in Figure 11 we may conclude on the stiffening effect of the carbon in the composite, 
yielding higher fundamental frequencies regardless the aspect ratio value.  

 

Figure 10. Non-dimensional fundamental frequency (Vf = 60%). 
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Figure 11. Non-dimensional natural frequencies. Glass-epoxy composite. 

In the legend of Figure 11, GE and CE stand respectively for glass-epoxy and carbon-epoxy. 
From this figure we may see extended to the higher vibration modes, the conclusion that the 
carbon-epoxy plates present higher frequencies’ values when compared to the glass-epoxy ones. It is 
also possible to globally observe that the natural frequencies present a decreasing trend for higher 
aspect ratios.  

4. Conclusions 

This work presents a study on the static and free vibrations response of sandwich and laminated 
composite plates, carried out through a first order shear deformation layerwise theory. The 
parametric analyses carried out allowed characterizing the influence of material and geometrical 
properties of these plates. Summarizing the results obtained in the different parametric studies 
carried out, it is possible to conclude on the importance of the sandwich core stiffness as well as on 
the nature of the reinforcement fiber and on the stacking sequence in the case of the three-layered 
fiber reinforced composite. The influence of the geometrical parameters considered namely the 
plate’s aspect ratio and the layers thicknesses was also verified in both cases. Globally, one considers 
that the results obtained in this parametric study, contributes to the understanding of the static and 
free vibrations behavior of sandwich and three-layered composite plates. It is also relevant to add 
that this layerwise theory, besides the achievement of a detailed kinematics description, may be 
computationally less expensive when compared to other equivalent single-layer higher order 
theories. 
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