Citation: Steffen E. Eikenberry. Hybrids are an effective transitional technology for limiting US passenger fleet carbon emissions[J]. AIMS Environmental Science, 2020, 7(2): 117-139. doi: 10.3934/environsci.2020007
[1] | Bureau of Transportation Statistics, National Transportation Statistics. Available from: www.bts.gov/topics/national-transportation-statistics. |
[2] | Rogelj JD, Shindell K, Jiang S, et al. (2018) Mitigation Pathways Compatible with 1.5 ℃ in the Context of Sustainable Development. In: Global Warming of 1.5 ℃. An IPCC Special Report on the impacts of global warming of 1.5 ℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte V, Zhai P, Pörtner HO, et al. (eds.)]. In Press. |
[3] | US Environmental Protection Agency, The 2018 EPA Automotive Trends Report: Greenhouse Gas Emissions, Fuel Economy, and Technology since 1975. EPA-420-R-19-002, Available from: nepis.epa.gov/Exe/ZyPDF.cgi/P100W5C2.PDF?Dockey=P100W5C2.PDF. |
[4] | Yuksel T, Tamayao MAM, Hendrickson C, et al. (2016) Effect of regional grid mix, driving patterns and climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States. Environ Res Lett 11:044007. doi: 10.1088/1748-9326/11/4/044007 |
[5] | Jones CM, Kammen DM (2011) Quantifying carbon footprint reduction opportunities for US households and communities. Environ Sci Technol 45: 4088-4095. doi: 10.1021/es102221h |
[6] | Ivanova D, Stadler K, Steen-Olsen K, et al. (2016) Environmental impact assessment of household consumption. J Ind Ecol 20: 526-536. doi: 10.1111/jiec.12371 |
[7] | Wiedenhofer D, Smetschka B, Akenji L, et al. (2018) Household time use, carbon footprints, and urban form: a review of the potential contributions of everyday living to the 1.5 C climate target. Curr Opin Environ Sustain 30: 7-17. doi: 10.1016/j.cosust.2018.02.007 |
[8] | Dietz T, Gardner GT, Gilligan J, et al. (2009). Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. PNAS 106: 18452-18456. doi: 10.1073/pnas.0908738106 |
[9] | Jansen KH, Brown TM, Samuelsen GS (2010) Emissions impacts of plug-in hybrid electric vehicle deployment on the US western grid. J Power Sources 195: 5409-5416. doi: 10.1016/j.jpowsour.2010.03.013 |
[10] | Zivin JSG, Kotchen MJ, Mansur ET (2014) Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies. J Econ Behav Organ 107: 248-268. doi: 10.1016/j.jebo.2014.03.010 |
[11] | Tamayao MAM, Michalek JJ, Hendrickson C, et al. (2015) Regional variability and uncertainty of electric vehicle life cycle CO2 emissions across the United States. Environ Sci Technol 49: 8844-8855. |
[12] | Axsen J, Kurani KS, McCarthy R, et al. (2011) Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model. Energy Policy 39: 1617-1629. doi: 10.1016/j.enpol.2010.12.038 |
[13] | Yuksel T, Michalek JJ (2015) Effects of regional temperature on electric vehicle efficiency, range, and emissions in the United States. Environ Sci Technol 49: 3974-3980. doi: 10.1021/es505621s |
[14] | Miotti M, Supran GJ, Kim EJ, et al. (2016) Personal vehicles evaluated against climate change mitigation targets. Environ Sci Technol 50: 10795-10804. doi: 10.1021/acs.est.6b00177 |
[15] | Yang F, Xie Y, Deng Y, et, al. (2018) Considering Battery Degradation in Life Cycle Greenhouse Gas Emission Analysis of Electric Vehicles. Procedia CIRP 69, 505-510. |
[16] | Ellingsen LAW, Singh B, Strømman AH (2016) The size and range effect: lifecycle greenhouse gas emissions of electric vehicles. Environ Res Lett 11: 054010. doi: 10.1088/1748-9326/11/5/054010 |
[17] | Manjunath A, Gross G (2017) Towards a meaningful metric for the quantification of GHG emissions of electric vehicles (EVs). Energy Policy 102: 423-429. doi: 10.1016/j.enpol.2016.12.003 |
[18] | Bicer Y, Dincer I (2017) Comparative life cycle assessment of hydrogen, methanol and electric vehicles from well to wheel. Int J Hydrog Energy 42: 3767-3777. |
[19] | Peng T, Ou X, Yan X (2018) Development and application of an electric vehicles life-cycle energy consumption and greenhouse gas emissions analysis model. Chem Eng Res Des 131: 699-708. doi: 10.1016/j.cherd.2017.12.018 |
[20] | Küng L, Bütler T, Georges G, et al. (2018) Decarbonizing passenger cars using different powertrain technologies: Optimal fleet composition under evolving electricity supply. Transp Res Part C Emerg Technol 95: 785-801. doi: 10.1016/j.trc.2018.09.003 |
[21] | Wu Z, Wang M, Zheng J, et al. (2018) Life cycle greenhouse gas emission reduction potential of battery electric vehicle. J Clean Prod 190: 462-470. doi: 10.1016/j.jclepro.2018.04.036 |
[22] | Kamiya G, Axsen J, Crawford C (2019) Modeling the GHG emissions intensity of plug- in electric vehicles using short-term and long-term perspectives. Transp Res D 69: 209-223. doi: 10.1016/j.trd.2019.01.027 |
[23] | Onat NC, Noori M, Kucukvar M, et al. (2017) Exploring the suitability of electric vehicles in the United States. Energy 121: 631-642. doi: 10.1016/j.energy.2017.01.035 |
[24] | US Department of Transportation, Federal Highway Administration, 2017 National Household Travel Survey. Available from: nhts.ornl.gov/. |
[25] | US Energy Information Administration, Annual Energy Outlook 2019 with projections to 2050. January 24, 2019. Available from: www.eia.gov/aeo/. |
[26] | US Census Bureau, County Population Totals and Components of Change: 2010-2018. Available from: www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html. |
[27] | IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovern-mental Panel on Climate Change [Stocker TF, Qin D. Plattner GK, et al. (eds.)]. NY, USA, Cambridge University Press, 1535. |
[28] | Argonne National Laboratory, GREET 1 Model. Available from: greet.es.anl.gov/. |
[29] | Venkatesh A, Jaramillo P, Griffin WM, et al. (2012) Uncertainty in life cycle greenhouse gas emissions from United States coal. Energy Fuels 26: 4917-4923. doi: 10.1021/ef300693x |
[30] | Howarth RW, Santoro R, Ingraffea A (2011) Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim Change 106: 679-690. doi: 10.1007/s10584-011-0061-5 |
[31] | Alvarez RA, Pacala SW, Winebrake JJ, et al. (2012) Greater focus needed on methane leakage from natural gas infrastructure. PNAS 109: 6435-6440. doi: 10.1073/pnas.1202407109 |
[32] | Alvarez RA, Zavala-Araiza D, Lyon DR, et al. (2018) Assessment of methane emissions from the US oil and gas supply chain. Science 361: 186-188. |
[33] | Caulton DR, Shepson PB, Santoro RL, et al. (2014) Toward a better understanding and quantification of methane emissions from shale gas development. PNAS 111: 6237-6242. doi: 10.1073/pnas.1316546111 |
[34] | Schneising O, Burrows JP, Dickerson RR, et al. (2014) Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations. Earths Future 2: 548-558. doi: 10.1002/2014EF000265 |
[35] | Miller SM, Wofsy SC, Michalak AM, et al. (2013) Anthropogenic emissions of methane in the United States. PNAS 110: 20018-20022. doi: 10.1073/pnas.1314392110 |
[36] | Brandt AR, Heath GA, Kort EA, et al. (2014) Methane leaks from North American natural gas systems. Science 343: 733-735. doi: 10.1126/science.1247045 |
[37] | Norgate T, Haque N, Koltun P (2014) The impact of uranium ore grade on the greenhouse gas footprint of nuclear power. J Clean Prod 84: 360-367. doi: 10.1016/j.jclepro.2013.11.034 |
[38] | Warner ES, Heath GA (2012) Life cycle greenhouse gas emissions of nuclear electricity generation. J Ind Ecol 16: S73-S92. doi: 10.1111/j.1530-9290.2012.00472.x |
[39] | Lenzen, M (2008) Life cycle energy and greenhouse gas emissions of nuclear energy: A review. Energy Convers Manag 49: 2178-2199. doi: 10.1016/j.enconman.2008.01.033 |
[40] | Sovacool BK (2008) Valuing the greenhouse gas emissions from nuclear power: A critical survey. Energy Policy 36: 2950-2963. doi: 10.1016/j.enpol.2008.04.017 |
[41] | Beerten J, Laes E, Meskens G, et al. (2009) Greenhouse gas emissions in the nuclear life cycle: A balanced appraisal. Energy Policy 37: 5056-5068. doi: 10.1016/j.enpol.2009.06.073 |
[42] | Kadiyala A, Kommalapati R, Huque Z (2016) Quantification of the lifecycle greenhouse gas emissions from nuclear power generation systems. Energies 9: 863. doi: 10.3390/en9110863 |
[43] | Song C, Gardner KH, Klein SJ, et al. (2018) Cradle-to-grave greenhouse gas emissions from dams in the United States of America. Renew Sust Energ Rev 90: 945-956. doi: 10.1016/j.rser.2018.04.014 |
[44] | Hertwich EG (2013) Addressing biogenic greenhouse gas emissions from hydropower in LCA. Environ Sci Technol 47: 9604-9611. doi: 10.1021/es401820p |
[45] | Teodoru CR, Bastien J, Bonneville MC, et al. (2012) The net carbon footprint of a newly created boreal hydroelectric reservoir. Global Biogeochem Cy 26: GB2016. |
[46] | Pacca S (2007) Impacts from decommissioning of hydroelectric dams: a life cycle perspective. Clim Change 84: 281-294. doi: 10.1007/s10584-007-9261-4 |
[47] | Dolan SL, Heath GA (2012) Life cycle greenhouse gas emissions of utility-scale wind power. J Ind Ecol 16: S136-S154. doi: 10.1111/j.1530-9290.2012.00464.x |
[48] | Arvesen A, Hertwich EG (2012) Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs. Renew Sust Energ Rev 16: 5994-6006. doi: 10.1016/j.rser.2012.06.023 |
[49] | Nugent D, Sovacool BK (2014) Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: a critical meta-survey. Energy Policy 65: 229-244. doi: 10.1016/j.enpol.2013.10.048 |
[50] | Sullivan JL, Clark C, Han J, et al. (2013) Cumulative energy, emissions, and water consumption for geothermal electric power production. J Renew Sustain Energy 5: 023127. doi: 10.1063/1.4798315 |
[51] | Bayer P, Rybach L, Blum P, et al. (2013) Review on life cycle environmental effects of geothermal power generation. Renew Sust Energ Rev 26: 446-463. doi: 10.1016/j.rser.2013.05.039 |
[52] | Fthenakis VM, Kim HC (2011) Photovoltaics: Life-cycle analyses. Solar Energy 85: 1609-1628. doi: 10.1016/j.solener.2009.10.002 |
[53] | Wong JH, Royapoor M, Chan CW (2016) Review of life cycle analyses and embodied energy requirements of single-crystalline and multi-crystalline silicon photovoltaic systems. Renew Sust Energ Rev 58: 608-618. doi: 10.1016/j.rser.2015.12.241 |
[54] | Fthenakis V, Raugei M (2017) Environmental life-cycle assessment of photovoltaic systems. In The Performance of Photovoltaic (PV) Systems (209-232). Woodhead Publishing. |
[55] | Milousi M, Souliotis M, Arampatzis G, et al. (2019) Evaluating the Environmental Performance of Solar Energy Systems Through a Combined Life Cycle Assessment and Cost Analysis. Sustainability 11: 2539. doi: 10.3390/su11092539 |
[56] | Djomo SN, Kasmioui OE, Ceulemans R (2011) Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. GCB Bioenergy 3: 181-197. doi: 10.1111/j.1757-1707.2010.01073.x |
[57] | Kadiyala A, Kommalapati R, Huque Z (2016) Evaluation of the life cycle greenhouse gas emissions from different biomass feedstock electricity generation systems. Sustainability 8: 1181. doi: 10.3390/su8111181 |
[58] | Fargione J, Hill J, Tilman D (2008) Land clearing and the biofuel carbon debt. Science 319: 1235-1238. doi: 10.1126/science.1152747 |
[59] | Repo A, Tuovinen JP, Liski J (2015) Can we produce carbon and climate neutral forest bioenergy?. GCB Bioenergy 7: 253-262. doi: 10.1111/gcbb.12134 |
[60] | Holtsmark B (2015) Quantifying the global warming potential of CO2 emissions from wood fuels. GCB Bioenergy 7: 195-206. doi: 10.1111/gcbb.12110 |
[61] | Hudiburg TW, Law BE, Wirth C, et al. (2011) Regional carbon dioxide implications of forest bioenergy production. Nat Clim Change 1: 419-423. doi: 10.1038/nclimate1264 |
[62] | Hudiburg TW, Luyssaert S, Thornton PE, et al. (2013) Interactive effects of envi- ronmental change and management strategies on regional forest carbon emissions. Environ Sci Technol 47: 13132-13140. doi: 10.1021/es402903u |
[63] | Schulze ED, Körner C, Law BE, et al. (2012) Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy 4: 611-616. doi: 10.1111/j.1757-1707.2012.01169.x |
[64] | Cherubini F, Huijbregts M, Kindermann G, et al. (2016) Global spatially explicit CO2 emission metrics for forest bioenergy. Sci Rep 6: 20186. doi: 10.1038/srep20186 |
[65] | Booth MS (2018) Not carbon neutral: Assessing the net emissions impact of residues burned for bioenergy. Environ Res Lett 13: 035001. doi: 10.1088/1748-9326/aaac88 |
[66] | US Environmental Protection Agency. Emissions & Generation Resource Integrated Database (eGRID). Available from: www.epa.gov/energy/emissions-generation-resource-integrated-database-. |
[67] | Casals LC, Martinez-Laserna E, García BA, et al. (2016) Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction. J Clean Prod 127: 425-437. doi: 10.1016/j.jclepro.2016.03.120 |
[68] | Van Vliet O, Brouwer AS, Kuramochi T, et al. (2011) Energy use, cost and CO2 emissions of electric cars. J Power Source 196: 2298-2310. doi: 10.1016/j.jpowsour.2010.09.119 |
[69] | US Environmental Protection Agency. Air Markets Program Data. Website ampd.epa.gov/ampd/ |
[70] | Siler-Evans K, Azevedo IL, Morgan MG (2012) Marginal emissions factors for the US electricity system. Environ Sci Technol 46: 4742-4748. doi: 10.1021/es300145v |
[71] | Argonne National Laboratory, GREET 2 Model. Available from: greet.es.anl.gov/ |
[72] | Ellingsen LAW, Majeau-Bettez G, Singh B, et al. (2014) Life cycle assessment of a lithium-ion battery vehicle pack. J Ind Ecol 18: 113-124. doi: 10.1111/jiec.12072 |
[73] | Kim HC, Wallington TJ, Arsenault R, et al. (2016) Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis. Environ Sci Technol 50: 7715-7722. doi: 10.1021/acs.est.6b00830 |
[74] | Peters JF, Baumann M, Zimmermann B, et al (2017) The environmental impact of Li-Ion batteries and the role of key parameters-A review. Renew Sust Energ Rev 67: 491-506. doi: 10.1016/j.rser.2016.08.039 |
[75] | Ellingsen LAW, Hung CR, Strømman AH (2017) Identifying key assumptions and differences in life cycle assessment studies of lithium-ion traction batteries with focus on greenhouse gas emissions. Transp Res D 55: 82-90. doi: 10.1016/j.trd.2017.06.028 |