Citation: Ekaterina Bereznyak, Natalia Gladkovskaya, Evgeniy Dukhopelnykov, Anastasiya Gerus, Anastasiya Lantushenko, Maxim Evstigneev. Thermal analysis of ligand-DNA interaction: determination of binding parameters[J]. AIMS Biophysics, 2015, 2(4): 423-440. doi: 10.3934/biophy.2015.4.423
[1] | Finley A, Copeland RA (2014) Small molecule control of chromatin remodeling. Chem Biol 21: 1196–1210. doi: 10.1016/j.chembiol.2014.07.024 |
[2] | Prinjha R, Tarakhovsky A (2013) Chromatin targeting drugs in cancer and immunity. Genes Dev 27: 1731–1738. doi: 10.1101/gad.221895.113 |
[3] | Rabbani A, Finn RM, Ausio J (2005) The anthracycline antibiotics: antitumor drugs that alter chromatin structure. Bioessays 27: 50–56. doi: 10.1002/bies.20160 |
[4] | Majumder P, Pradhan SK, Devi PG, et al. (2007) Chromatin as a target for the DNA-binding anticancer drugs. Subcell Biochem 41: 145–189. doi: 10.1007/1-4020-5466-1_8 |
[5] | Banerjee A, Majumder P, Sanyal S, et al. (2014) The DNA intercalators ethidium bromide and propidium iodide also bind to core histones. FEBS Open Bio 4: 251–259. doi: 10.1016/j.fob.2014.02.006 |
[6] | Hajihassan Z, Rabbani-Chadegani A (2009) Studies on the binding affinity of anticancer drug mitoxantrone to chromatin, DNA and histone proteins. J Biomed Sci 16: 31. doi: 10.1186/1423-0127-16-31 |
[7] | Rabbani-Chadegani A, Chamani E, Hajihassan Z (2009) The effect of vinca alkaloid anticancer drug, vinorelbine, on chromatin and histone proteins in solution. Eur J Pharmacol 613: 34–38. doi: 10.1016/j.ejphar.2009.04.040 |
[8] | Rabbani-Chadegani A, Keyvani-Ghamsari S, Zarkar N (2011) Spectroscopic studies of dactinomycin and vinorelbine binding to deoxyribonucleic acid and chromatin. Spectrochim Acta A Mol Biomol Spectrosc 84: 62–67. doi: 10.1016/j.saa.2011.08.064 |
[9] | Rabbani A, Iskandar M, Ausio J (1999) Daunomycin-induced unfolding and aggregation of chromatin. J Biol Chem 274: 18401–18406. doi: 10.1074/jbc.274.26.18401 |
[10] | Mir MA, Majee S, Das S, et al. (2003) Association of chromatin with anticancer antibiotics, mithramycin and chromomycin A3. Bioorg Med Chem 11: 2791–2801. doi: 10.1016/S0968-0896(03)00211-6 |
[11] | Mir MA, Dasgupta D (2001) Association of the anticancer antibiotic chromomycin A(3) with the nucleosome: role of core histone tail domains in the binding process. Biochemistry 40: 11578–11585. doi: 10.1021/bi010731r |
[12] | Mir MA, Dasgupta D (2001) Interaction of antitumor drug, mithramycin, with chromatin. Biochem Biophys Res Commun 280: 68–74. doi: 10.1006/bbrc.2000.4075 |
[13] | Hagmar P, Pierrou S, Nielsen P, et al. (1992) Ionic strength dependence of the binding of methylene blue to chromatin and calf thymus DNA. J Biomol Struct Dyn 9: 667–679. doi: 10.1080/07391102.1992.10507947 |
[14] | Mir MA, Das S, Dasgupta D (2004) N-terminal tail domains of core histones in nucleosome block the access of anticancer drugs, mithramycin and daunomycin, to the nucleosomal DNA. Biophys Chem 109: 121–135. doi: 10.1016/j.bpc.2003.10.023 |
[15] | Hurley LH (2002) DNA and its associated processes as targets forcancer therapy. Nat Rev Cancer 2: 188–200. doi: 10.1038/nrc749 |
[16] | Veselkov AN, Davies DB (2002) Anticancer drug design, Sevastopol: Sevntu press, 259. |
[17] | Veselkov AN, Maleev VYa, Glibin EN, et al. (2003) Structure–activity relation for synthetic phenoxazone drugs.Evidence for a direct correlation between DNA binding and pro-apoptotic activity. Eur J Biochem 270: 4200–4207 |
[18] | Andersson J, Lincoln P (2011) Stereoselectivity for DNA threading intercalation of short binuclear ruthenium complexes. J Phys Chem B 115: 14768–14775. doi: 10.1021/jp2062767 |
[19] | Chaurasiya KR, Paramanathan T, McCauley MJ, et al. (2010) Biophysical characterization of DNA binding from single molecule force measurements. Phys Life Rev 7: 299–341. |
[20] | Nordell P, Lincoln P (2005) Mechanism of DNA threading intercalation of binuclear Ru complexes: uni- or bimolecular pathways depending on ligand structure and binding density. J Am Chem Soc 127: 9670–9671. doi: 10.1021/ja0521674 |
[21] | Andersson J, Li M, Lincoln P (2010) AT-specific DNA binding of binuclear ruthenium complexes at the border of threading intercalation. Chemistry 16: 11037–11046. |
[22] | Wilhelmsson LM, Lincoln P, Nordґen B (2006) Slow DNA binding. In: Waring M, editor. Sequence-Specific DNA Binding Agents, The Royal Society of Chemistry, Cambridge, 69–95. |
[23] | Palchaudhuri R, Hergenrother PJ (2007) DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr Opin Biotechnol 18: 497–503. doi: 10.1016/j.copbio.2007.09.006 |
[24] | Barton TF, Cooney RP, Denny WA (1992) Surface-enhanced Raman spectroscopic study of amsacrine and amsacrine–DNA interactions. J Raman Spectrosc 23: 341–345. |
[25] | Rodger A, Blagbrough IS, Adlam G, et al. (1994) DNA binding of a spermine derivative: Spectroscopic study of anthracene-9-carbonyl-n1-spermine with poly[d(G-C)·(d(G-C))] and poly[d(A-T) · d(A-T)]. Biopolymers 34: 1583–1593. doi: 10.1002/bip.360341203 |
[26] | Hackl EV, Galkin VL, Blagoi YP (2004) DNA interaction with biologically active divalent metal ions: binding constants calculation. Int J Biol Macromol 34: 303–308. |
[27] | Evstigneev MP, Mykhina YV, Davies DB (2005) Complexation of daunomycin with a DNA oligomer in the presence of an aromatic vitamin (B2) determined by NMR spectroscopy. Biophys Chem 118: 118–127. doi: 10.1016/j.bpc.2005.08.007 |
[28] | Hackl EV, Blagoi YP (2005) The effect of temperature on DNA structural transitions under the action of Cu2+ and Ca2+ ions in aqueous solutions. Biopolymers 77: 315–324. doi: 10.1002/bip.20225 |
[29] | Kruglova EB, Gladkovskaia NA, Maleev V (2005) The use of the spectrophotometric analysis for the calculation of the thermodynamic parameters in actinocin derivative-DNA systems. Biofizika 50: 253–264. |
[30] | Evstigneev MP, Baranovskii SF, Rybakova KA, et al. (2006) 1H NMR study of the complexation of the quinolone antibiotic norfloxacin with DNA. Mol Biol (Mosk) 40: 894–899. |
[31] | Evstigneev MP, Rybakova KA, Davies DB (2006) Complexation of norfloxacin with DNA in the presence of caffeine. Biophys Chem 121: 84–95. doi: 10.1016/j.bpc.2005.12.003 |
[32] | Williams AK, Dasilva SC, Bhatta A, et al. (2012) Determination of the drug-DNA binding modes using fluorescence-based assays. Anal Biochem 422: 66–73. doi: 10.1016/j.ab.2011.12.041 |
[33] | Anupama B, Sunita M, Shiva LD, et al. (2014) Synthesis, spectral characterization, DNA binding studies and antimicrobial activity of Co(II), Ni(II), Zn(II), Fe(III) and VO(IV) complexes with 4-aminoantipyrine Schiff base of ortho-vanillin. J Fluoresc 24: 1067–1076. doi: 10.1007/s10895-014-1386-z |
[34] | Zasedatelev AS, Gurskii GV, Vol'kenshtein MV (1971) Theory of one-dimensional adsorption. I. Adsorption of small molecules on a homopolymer. Molecular biology 5: 194–198. |
[35] | McGhee JD, von Hippel PH (1974) Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86: 469–489. doi: 10.1016/0022-2836(74)90031-X |
[36] | Schellman JA (1974) Cooperative Multisite Binding to DNA. Israel Journal of Chemistry 12: 219–238. doi: 10.1002/ijch.197400021 |
[37] | Nechipurenko YD, Gursky GV (1986) Cooperative effects on binding of proteins to DNA. Biophys Chem 24: 195–209. doi: 10.1016/0301-4622(86)85025-6 |
[38] | Lando DY, Teif VB (2000) Long-range interactions between ligands bound to a DNA molecule give rise to adsorption with the character of phase transition of the first kind. J Biomol Struct Dyn 17: 903–911. doi: 10.1080/07391102.2000.10506578 |
[39] | Teif VB, Rippe K (2010) Statistical-mechanical lattice models for protein-DNA binding in chromatin. J Phys Condens Matter 22: 414105. doi: 10.1088/0953-8984/22/41/414105 |
[40] | Breslauer KJ, Freire E, Straume M (1992) Calorimetry: a tool for DNA and ligand-DNA studies. Methods Enzymol 211: 533–567. |
[41] | Doyle ML (1997) Characterization of binding interactions by isothermal titration calorimetry. Curr Opin Biotechnol 8: 31–35. doi: 10.1016/S0958-1669(97)80154-1 |
[42] | Jelesarov I, Bosshard HR (1999) Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J Mol Recognit 12: 3–18. |
[43] | Haq I, Chowdhry BZ, Jenkins TC (2001)Calorimetric techniques in the study of high-order DNA-drug interactions. Methods Enzymol 340: 109–149. |
[44] | Thomson JA, Ladbury JE (2004) Isothermal titration calorimetry: a tutorial. In Ladbury JE, Doyle ML, editors. Biocalorimetry 2. Applications of Calorimetry in the Biological Sciences, Chichester: John Wiley & Sons, 35–58. |
[45] | Holdgate GA, Ward WH (2005) Measurements of binding thermodynamics in drug discovery. Drug Discov Today 10: 1543–1550. |
[46] | Freyer MW, Lewis EA (2008) Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol 84: 79–113. doi: 10.1016/S0091-679X(07)84004-0 |
[47] | Bhadra K, Maiti M, Kumar GS (2008) Berberine–DNA complexation: New insights into the cooperative binding and energetic aspects. Biochimica et Biophysica Acta 1780: 1054–1061. doi: 10.1016/j.bbagen.2008.05.005 |
[48] | Hossain M, Kumar GS (2009) DNA intercalation of methylene blue and quinacrine: new insights into base and sequence specificity from structural and thermodynamic studies with polynucleotides. Mol Biosyst 5: 1311–1322. |
[49] | Crane-Robinson C, Dragan AI, Read CM (2009) Defining the thermodynamics of protein/DNA complexes and their components using micro-calorimetry. Methods Mol Biol 543: 625–651. doi: 10.1007/978-1-60327-015-1_37 |
[50] | Kabir A, Kumar GS (2013) Binding of the biogenic polyamines to deoxyribonucleic acids of varying base composition: base specificity and the associated energetics of the interaction. PLoS One 8: e70510. doi: 10.1371/journal.pone.0070510 |
[51] | Kumar S, Spano MN, Arya DP (2014) Shape readout of AT-rich DNA by carbohydrates. Biopolymers 101: 720–732. doi: 10.1002/bip.22448 |
[52] | Basu A, Kumar GS (2015) Thermodynamic characterization of proflavine–DNA binding through microcalorimetric studies. J Chem Thermodyn 87: 1–7. doi: 10.1016/j.jct.2015.03.009 |
[53] | Basu A, Kumar GS (2015) Studies on the interaction of the food colorant tartrazine with double stranded deoxyribonucleic acid. J Biomol Struct Dyn 10: 1–8. |
[54] | Chaires JB (1997) Possible origin of differences between van't Hoff and calorimetric enthalpy estimates. Biophys Chem 64: 15–23. |
[55] | Chaires JB (2008) Calorimetry and thermodynamics in drug design. Annu Rev Biophys 37: 135–151. |
[56] | Janjua NK, Siddiqa A, Yaqub A, et al. (2009) Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions. Spectrochim Acta A Mol Biomol Spectrosc 74: 1135–1137. doi: 10.1016/j.saa.2009.09.022 |
[57] | Temerk YM, Ibrahim MS, Kotb M (2009) Voltammetric and spectroscopic studies on binding of antitumor Morin, Morin-Cu complex and Morin-beta-cyclodextrin with DNA. Spectrochim Acta A Mol Biomol Spectrosc 71: 1830–1836. doi: 10.1016/j.saa.2008.07.001 |
[58] | Baranovskii SF, Chernyshev DN, Buchel’nikov AS, et al. (2011) Thermodynamic analysis of complex formation of ethidium bromide with DNA in water solutions. Biophysics 56: 214–219. doi: 10.1134/S0006350911020023 |
[59] | Chaires JB (1997) Energetics of drug-DNA interactions. Biopolymers 44: 201–215. |
[60] | Ren J, Jenkins TC, Chaires JB (2000) Energetics of DNA intercalation reactions. Biochemistry 39: 8439–8447. doi: 10.1021/bi000474a |
[61] | Davies DB, Veselkov AN (1996) Structural and thermodynamical analysis of molecular complexation by 1H NMR spectroscopy. Intercalation of ethidium bromide with the isomeric deoxytetranucleoside triphosphates 5’-d(GpCpGpC) and 5’-d(CpGpCpG) in aqueous solution. J Chem Soc Faraday Trans 92: 3545-3557. doi: 10.1039/ft9969203545 |
[62] | Kostjukov VV, Pahomov VI, Andrejuk DD, et al. (2007) Investigation of the complexation of the anti-cancer drug novantrone with the hairpin structure of the deoxyheptanucleotide 5′-d(GpCpGpApApGpC). J Mol Struct 843: 78–86. doi: 10.1016/j.molstruc.2006.12.036 |
[63] | Wartell RM, Benight AS (1985) Thermal denaturation of DNA molecules: A comparison of theory with experiment. Phys Rep 126: 67–107. doi: 10.1016/0370-1573(85)90060-2 |
[64] | Rice SA, Doty P (1957) The Thermal Denaturation of Desoxyribose Nucleic Acid. J Am Chem Soc 79: 3937–3947. doi: 10.1021/ja01572a001 |
[65] | Guedin A, Lacroix L, Mergny JL (2010) Thermal melting studies of ligand DNA interactions. Methods Mol Biol 613: 25–35. doi: 10.1007/978-1-60327-418-0_2 |
[66] | Goldstein G, Stern KG (1950) Experiments on the sonic, thermal, and enzymic depolymerization of desoxyribosenucleic acid. J Struc Chem 5: 687–708. |
[67] | Thomas R (1954) Recherches sur la d'enaturation des acides desoxyribonucléiques. Biochimica et Biophysica Acta 14: 231–240. doi: 10.1016/0006-3002(54)90163-8 |
[68] | Frank-Kamenetskii M (1965) Theory of the helix–coil transition for deoxyribonucleic acids with additional connections between the chains. Vysokomolekulyarnye Soedineniya 7: 354–361. |
[69] | Frank-Kamenetskii M (1968) Consideration of helix-coil transition in homopolymers by the most probable distribution method. Mol Biol 2: 408–419. |
[70] | Stewart CR (1968) Broadening by acridine orange of the thermal transition of DNA. Biopolymers 6: 1737–1743. doi: 10.1002/bip.1968.360061208 |
[71] | Lazurkin YS, Frank-Kamenetskii MD, Trifonov EN (1970) Melting of DNA: its study and application as a research method. Biopolymers 9: 1253–1306. doi: 10.1002/bip.1970.360091102 |
[72] | Barcelo F, Capo D, Portugal J (2002) Thermodynamic characterization of the multivalent binding of chartreusin to DNA. Nucleic Acids Res 30: 4567–4573. doi: 10.1093/nar/gkf558 |
[73] | Zhong W, Yu JS, Liang Y (2003) Chlorobenzylidine-herring sperm DNA interaction: binding mode and thermodynamic studies. Spectrochim Acta A Mol Biomol Spectrosc 59: 1281–1288. doi: 10.1016/S1386-1425(02)00301-3 |
[74] | Vardevanyan PO, Antonyan AP, Hambardzumyan LA, et al. (2013) Thermodynamic analysis of DNA complexes with methylene blue, ethidium bromide and Hoechst 33258. Biopolym. Cell 29: 515–520. doi: 10.7124/bc.000843 |
[75] | Hajian R, Guan Huat T (2013) Spectrophotometric Studies on the Thermodynamics of the ds-DNA Interaction with Irinotecan for a Better Understanding of Anticancer Drug-DNA Interactions. J Spectrosc 2013: 1–8. |
[76] | Cooper A, Johnson CM (1994) Introduction to microcalorimetry and biomolecular energetics. Methods Mol Biol 22: 109–24. |
[77] | Rosgen J, Hinz HJ (1999) Theory and practice of DSC mesuarements on proteins. In: Kemp RB, editor. Handbook of Thermal Analysis and Calorimetry, Vol.4, From Macromolecules to Man, Amsterdam: Elsevier, 63–108. |
[78] | Bruylants G, Wouters J, Michaux C (2005) Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem 12: 2011–2020. doi: 10.2174/0929867054546564 |
[79] | Spink CH (2008) Differential scanning calorimetry. Methods Cell Biol 84: 115–141. doi: 10.1016/S0091-679X(07)84005-2 |
[80] | Bereznyak EG, Gladkovskaya NA, Khrebtova AS, et al. (2009) Peculiarities of DNA-proflavine binding under different concentration ratios. Biophysics 54: 574–580. doi: 10.1134/S0006350909050030 |
[81] | Garbett N (2011) The Use of Calorimetry to Study Ligand–DNA Interactions. In: Aldrich-Wright J, editor. Metallointercalators, Vienna: Springer, 299–324. |
[82] | Ising E (1925) Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik 31: 253–258. doi: 10.1007/BF02980577 |
[83] | Poland DC, Scheraga HA (1970) The theory of helix coil transition, New York: Academic Press. |
[84] | Peyrard M, Bishop AR (1989) Statistical mechanics of a nonlinear model for DNA denaturation. Phys Rev Lett 62: 2755–2758. doi: 10.1103/PhysRevLett.62.2755 |
[85] | Dauxois T, Peyrard M, Bishop AR (1993) Entropy-driven DNA denaturation. Physical Review E 47: R44–R47. doi: 10.1103/PhysRevE.47.R44 |
[86] | Dauxois T, Peyrard M, Bishop AR (1993) Dynamics and thermodynamics of a nonlinear model for DNA denaturation. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 47: 684–695. |
[87] | Grosberg AIU, Khokhlov AR (1994) Statistical physics of macromolecules, New York: AIP Press. |
[88] | Frank-Kamenetskii MD, Prakash S (2014) Fluctuations in the DNA double helix: A critical review. Phys Life Rev 11: 153–170. doi: 10.1016/j.plrev.2014.01.005 |
[89] | Cantor CR, Schimmel PR (1980) Biophysical chemistry. 3. The behavior of biological macromolecules, San Francisco, Freeman. |
[90] | Zimm BH, Bragg JK (1959) Theory of the Phase Transition between Helix and Random Coil in Polypeptide Chains. J Chem Phys 31: 526–535. doi: 10.1063/1.1730390 |
[91] | Crothers DM (1971) Statistical thermodynamics of nucleic acid melting transitions with coupled binding equilibria. Biopolymers 10: 2147–2160. doi: 10.1002/bip.360101110 |
[92] | McGhee JD (1976) Theoretical calculations of the helix-coil transition of DNA in the presence of large, cooperatively binding ligands. Biopolymers 15: 1345–1375. doi: 10.1002/bip.1976.360150710 |
[93] | Akhrem AA, Fridman AS, Lando D (1985) Theory of helix-coil transition of the heterogeneous DNA-heteroqeneous ligands complexes. Biopolym Cell 1: 171–179. doi: 10.7124/bc.00017E |
[94] | Lando D (1994) A theoretical consideration of the influence of selective binding of small ligands on DNA helix-coil transition. J Biomol Struct Dyn 12: 343–354. doi: 10.1080/07391102.1994.10508744 |
[95] | Akhrem AA, Lando D (1979) Influence of ligands characteristic of selective binding to a certain type of base pairs on DNA helix-coil transition I. Model. Theory. Mol Biol (Mosk) 13: 1098–1109. |
[96] | Akhrem AA, Lando D, Shpakovskii AG, et al. (1990) The effect of long-range interactions between adsorbed ligands on the DNA helix-coil transition. Mol Biol (Mosk) 24: 649–656. |
[97] | Lando D, Ivanova MA, Akhrem AA (1980) Effect of changes in the stoichiometry of DNA-ligand complexes during heat denaturation of DNA on helix-coil transition parameters. Mol Biol (Mosk) 14: 1281–1288. |
[98] | Karapetian AT, Mehrabian NM, Terzikian GA, et al. (1996) Theoretical treatment of melting of complexes of DNA with ligands having several types of binding sites on helical and single-stranded DNA. J Biomol Struct Dyn 14: 275–283. doi: 10.1080/07391102.1996.10508118 |
[99] | Plum GE, Bloomfield VA (1990) Structural and electrostatic effects on binding of trivalent cations to double-stranded and single-stranded poly[d (AT)]. Biopolymers 29: 13–27. doi: 10.1002/bip.360290105 |
[100] | Spink CH, Chaires JB (1997) Thermodynamics of the Binding of a Cationic Lipid to DNA. J Am Chem Soc 119: 10920–10928. doi: 10.1021/ja964324s |
[101] | Leng F, Chaires JB, Waring MJ (2003) Energetics of echinomycin binding to DNA. Nucleic Acids Res 31: 6191–6197. doi: 10.1093/nar/gkg826 |
[102] | Pasic L, Sepcic K, Turk T, et al. (2001) Characterization of parazoanthoxanthin A binding to a series of natural and synthetic host DNA duplexes. Arch Biochem Biophys 393: 132–142. doi: 10.1006/abbi.2001.2469 |
[103] | Portugal J, Cashman DJ, Trent JO, et al. (2005) A new bisintercalating anthracycline with picomolar DNA binding affinity. J Med Chem 48: 8209–8219. doi: 10.1021/jm050902g |
[104] | Liu Y-J, Wei X, Mei W-J, et al. (2007) Synthesis, characterization and DNA binding studies of ruthenium(II) complexes: [Ru(bpy)2(dtmi)]2+ and [Ru(bpy)2(dtni)]2+. Transit Metal Chem 32: 762–768. doi: 10.1007/s11243-007-0246-y |
[105] | Peng B, Chen X, Du KJ, et al. (2009) Synthesis, characterization and DNA-binding studies of ruthenium(II) mixed-ligand complexes containing dipyrido[1,2,5]oxadiazolo[3,4-b]quinoxaline. Spectrochim Acta A Mol Biomol Spectrosc 74: 896–901. doi: 10.1016/j.saa.2009.08.031 |
[106] | Barcelo F, Portugal J (2004) Elsamicin A binding to DNA. A comparative thermodynamic characterization. FEBS Lett 576: 68–72. |
[107] | Barcelo F, Scotta C, Ortiz-Lombardia M, et al. (2007) Entropically-driven binding of mithramycin in the minor groove of C/G-rich DNA sequences. Nucleic Acids Res 35: 2215–2226. doi: 10.1093/nar/gkm037 |
[108] | Marky LA, Blumenfeld KS, Breslauer KJ (1983) Calorimetric and spectroscopic investigation of drug-DNA interactions. I. The binding of netropsin to poly d(AT). Nucleic Acids Res 11: 2857–2870. |
[109] | Remeta DP, Mudd CP, Berger RL, et al (1993) Thermodynamic characterization of daunomycin-DNA interactions: comparison of complete binding profiles for a series of DNA host duplexes. Biochemistry 32: 5064–5073. doi: 10.1021/bi00070a014 |
[110] | Brandts JF, Lin LN (1990) Study of strong to ultratight protein interactions using differential scanning calorimetry. Biochemistry 29: 6927–6940. |
[111] | Barone G, Catanzano F, Del Vecchio P, et al. (1995) Differential scanning calorimetry as a tool to study protein-ligand interactions. Pure Appl Chem 67: 1867–1872. |
[112] | Dassie SA, Celej MS, Fidelio GD (2005) Protein Unfolding Coupled to Ligand Binding: Differential Scanning Calorimetry Simulation Approach. J Chem Educ 82: 85. doi: 10.1021/ed082p85 |
[113] | Celej MS, Dassie SA, Gonzalez M, et al. (2006) Differential scanning calorimetry as a tool to estimate binding parameters in multiligand binding proteins. Anal Biochem 350: 277–284. doi: 10.1016/j.ab.2005.12.029 |
[114] | Esposito D, Del Vecchio P, Barone G (2001) A thermodynamic study of herring protamine-DNA complex by differential scanning calorimetry. Phys Chem Chem Phys 3: 5320–5325. doi: 10.1039/b107218h |
[115] | Dukhopelnikov EV, Bereznyak EG, Khrebtova AS, et al. (2013) Determination of ligand to DNA binding parameters from two-dimensional DSC curves. J Therm Anal Calorim 111: 1817–1827. doi: 10.1007/s10973-012-2561-6 |
[116] | Straume M, Freire E (1992) Two-dimensional differential scanning calorimetry: Simultaneous resolution of intrinsic protein structural energetics and ligand binding interactions by global linkage analysis. Anal Biochem 203: 259–268. doi: 10.1016/0003-2697(92)90311-T |
[117] | Freire E (1994) Statistical thermodynamic analysis of differential scanning calorimetry data: structural deconvolution of heat capacity function of proteins. Methods Enzymol 240: 502–530. doi: 10.1016/S0076-6879(94)40062-8 |
[118] | Freire E (1995) Differential scanning calorimetry. Methods Mol Biol 40: 191–218. |
[119] | Marky LA, Breslauer KJ (1987) Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers 26: 1601–1620. doi: 10.1002/bip.360260911 |
[120] | Sturtevant JM (1987) Biochemical Applications of Differential Scanning Calorimetry. Annu Rev Phys Chem 38: 463–488. doi: 10.1146/annurev.pc.38.100187.002335 |
[121] | Kawai Y (1999) Thermal transition profiles of bacteriophage T4 and its DNA. J Gen Appl Microbiol 45: 135–138. doi: 10.2323/jgam.45.135 |
[122] | Tostesen E, Sandve GK, Liu F, et al. (2009) Segmentation of DNA sequences into twostate regions and melting fork regions. J Phys Condens Matter 21: 034109. doi: 10.1088/0953-8984/21/3/034109 |
[123] | Duguid JG, Bloomfield VA, Benevides JM, et al. (1996) DNA melting investigated by differential scanning calorimetry and Raman spectroscopy. Biophys J 71: 3350–3360. |
[124] | Movileanu L, Benevides JM, Thomas GJ (2002) Determination of base and backbone contributions to the thermodynamics of premelting and melting transitions in B DNA. Nucleic Acids Res 30: 3767–3777. doi: 10.1093/nar/gkf471 |
[125] | Dukhopelnikov EV (2014) Modeling of heat absorption curves for ligand-competitor-DNA triple system. Biophysical Bulletin 31: 49–58. |
[126] | 1. Finley A, Copeland RA (2014) Small molecule control of chromatin remodeling. Chem Biol 21: 1196-1210. doi: 10.1016/j.chembiol.2014.07.024 |
[127] | 2. Prinjha R, Tarakhovsky A (2013) Chromatin targeting drugs in cancer and immunity. Genes Dev 27: 1731-1738. doi: 10.1101/gad.221895.113 |
[128] | 3. Rabbani A, Finn RM, Ausio J (2005) The anthracycline antibiotics: antitumor drugs that alter chromatin structure. Bioessays 27: 50-56. doi: 10.1002/bies.20160 |
[129] | 4. Majumder P, Pradhan SK, Devi PG, et al. (2007) Chromatin as a target for the DNA-binding anticancer drugs. Subcell Biochem 41: 145-189. doi: 10.1007/1-4020-5466-1_8 |
[130] | 5. Banerjee A, Majumder P, Sanyal S, et al. (2014) The DNA intercalators ethidium bromide and propidium iodide also bind to core histones. FEBS Open Bio 4: 251-259. doi: 10.1016/j.fob.2014.02.006 |
[131] | 6. Hajihassan Z, Rabbani-Chadegani A (2009) Studies on the binding affinity of anticancer drug mitoxantrone to chromatin, DNA and histone proteins. J Biomed Sci 16: 31. doi: 10.1186/1423-0127-16-31 |
[132] | 7. Rabbani-Chadegani A, Chamani E, Hajihassan Z (2009) The effect of vinca alkaloid anticancer drug, vinorelbine, on chromatin and histone proteins in solution. Eur J Pharmacol 613: 34-38. doi: 10.1016/j.ejphar.2009.04.040 |
[133] | 8. Rabbani-Chadegani A, Keyvani-Ghamsari S, Zarkar N (2011) Spectroscopic studies of dactinomycin and vinorelbine binding to deoxyribonucleic acid and chromatin. Spectrochim Acta A Mol Biomol Spectrosc 84: 62-67. doi: 10.1016/j.saa.2011.08.064 |
[134] | 9. Rabbani A, Iskandar M, Ausio J (1999) Daunomycin-induced unfolding and aggregation of chromatin. J Biol Chem 274: 18401-18406. doi: 10.1074/jbc.274.26.18401 |
[135] | 10. Mir MA, Majee S, Das S, et al. (2003) Association of chromatin with anticancer antibiotics, mithramycin and chromomycin A3. Bioorg Med Chem 11: 2791-2801. doi: 10.1016/S0968-0896(03)00211-6 |
[136] | 11. Mir MA, Dasgupta D (2001) Association of the anticancer antibiotic chromomycin A(3) with the nucleosome: role of core histone tail domains in the binding process. Biochemistry 40: 11578-11585. doi: 10.1021/bi010731r |
[137] | 12. Mir MA, Dasgupta D (2001) Interaction of antitumor drug, mithramycin, with chromatin. Biochem Biophys Res Commun 280: 68-74. doi: 10.1006/bbrc.2000.4075 |
[138] | 13. Hagmar P, Pierrou S, Nielsen P, et al. (1992) Ionic strength dependence of the binding of methylene blue to chromatin and calf thymus DNA. J Biomol Struct Dyn 9: 667-679. doi: 10.1080/07391102.1992.10507947 |
[139] | 14. Mir MA, Das S, Dasgupta D (2004) N-terminal tail domains of core histones in nucleosome block the access of anticancer drugs, mithramycin and daunomycin, to the nucleosomal DNA. Biophys Chem 109: 121-135. doi: 10.1016/j.bpc.2003.10.023 |
[140] | 15. Hurley LH (2002) DNA and its associated processes as targets forcancer therapy. Nat Rev Cancer 2: 188-200. doi: 10.1038/nrc749 |
[141] | 17. Veselkov AN, Maleev VYa, Glibin EN, et al. (2003) Structure-activity relation for synthetic phenoxazone drugs.Evidence for a direct correlation between DNA binding and pro-apoptotic activity. Eur J Biochem 270: 4200-4207 |
[142] | 18. Andersson J, Lincoln P (2011) Stereoselectivity for DNA threading intercalation of short binuclear ruthenium complexes. J Phys Chem B 115: 14768-14775. doi: 10.1021/jp2062767 |
[143] | 19. Chaurasiya KR, Paramanathan T, McCauley MJ, et al. (2010) Biophysical characterization of DNA binding from single molecule force measurements. Phys Life Rev 7: 299-341. |
[144] | 20. Nordell P, Lincoln P (2005) Mechanism of DNA threading intercalation of binuclear Ru complexes: uni- or bimolecular pathways depending on ligand structure and binding density. J Am Chem Soc 127: 9670-9671. doi: 10.1021/ja0521674 |
[145] | 21. Andersson J, Li M, Lincoln P (2010) AT-specific DNA binding of binuclear ruthenium complexes at the border of threading intercalation. Chemistry 16: 11037-11046. |
[146] | 22. Wilhelmsson LM, Lincoln P, Nordґen B (2006) Slow DNA binding. In: Waring M, editor. Sequence-Specific DNA Binding Agents, The Royal Society of Chemistry, Cambridge, 69-95. |
[147] | 23. Palchaudhuri R, Hergenrother PJ (2007) DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr Opin Biotechnol 18: 497-503. doi: 10.1016/j.copbio.2007.09.006 |
[148] | 24. Barton TF, Cooney RP, Denny WA (1992) Surface-enhanced Raman spectroscopic study of amsacrine and amsacrine-DNA interactions. J Raman Spectrosc 23: 341-345. |
[149] | 25. Rodger A, Blagbrough IS, Adlam G, et al. (1994) DNA binding of a spermine derivative: Spectroscopic study of anthracene-9-carbonyl-n1-spermine with poly[d(G-C)·(d(G-C))] and poly[d(A-T) · d(A-T)]. Biopolymers 34: 1583-1593. doi: 10.1002/bip.360341203 |
[150] | 26. Hackl EV, Galkin VL, Blagoi YP (2004) DNA interaction with biologically active divalent metal ions: binding constants calculation. Int J Biol Macromol 34: 303-308. |
[151] | 27. Evstigneev MP, Mykhina YV, Davies DB (2005) Complexation of daunomycin with a DNA oligomer in the presence of an aromatic vitamin (B2) determined by NMR spectroscopy. Biophys Chem 118: 118-127. doi: 10.1016/j.bpc.2005.08.007 |
[152] | 28. Hackl EV, Blagoi YP (2005) The effect of temperature on DNA structural transitions under the action of Cu2+ and Ca2+ ions in aqueous solutions. Biopolymers 77: 315-324. doi: 10.1002/bip.20225 |
[153] | 29. Kruglova EB, Gladkovskaia NA, Maleev V (2005) The use of the spectrophotometric analysis for the calculation of the thermodynamic parameters in actinocin derivative-DNA systems. Biofizika 50: 253-264. |
[154] | 30. Evstigneev MP, Baranovskii SF, Rybakova KA, et al. (2006) 1H NMR study of the complexation of the quinolone antibiotic norfloxacin with DNA. Mol Biol (Mosk) 40: 894-899. |
[155] | 31. Evstigneev MP, Rybakova KA, Davies DB (2006) Complexation of norfloxacin with DNA in the presence of caffeine. Biophys Chem 121: 84-95. doi: 10.1016/j.bpc.2005.12.003 |
[156] | 32. Williams AK, Dasilva SC, Bhatta A, et al. (2012) Determination of the drug-DNA binding modes using fluorescence-based assays. Anal Biochem 422: 66-73. doi: 10.1016/j.ab.2011.12.041 |
[157] | 33. Anupama B, Sunita M, Shiva LD, et al. (2014) Synthesis, spectral characterization, DNA binding studies and antimicrobial activity of Co(II), Ni(II), Zn(II), Fe(III) and VO(IV) complexes with 4-aminoantipyrine Schiff base of ortho-vanillin. J Fluoresc 24: 1067-1076. doi: 10.1007/s10895-014-1386-z |
[158] | 34. Zasedatelev AS, Gurskii GV, Vol'kenshtein MV (1971) Theory of one-dimensional adsorption. I. Adsorption of small molecules on a homopolymer. Molecular biology 5: 194-198. |
[159] | 35. McGhee JD, von Hippel PH (1974) Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86: 469-489. doi: 10.1016/0022-2836(74)90031-X |
[160] | 36. Schellman JA (1974) Cooperative Multisite Binding to DNA. Israel Journal of Chemistry 12: 219-238. doi: 10.1002/ijch.197400021 |
[161] | 37. Nechipurenko YD, Gursky GV (1986) Cooperative effects on binding of proteins to DNA. Biophys Chem 24: 195-209. doi: 10.1016/0301-4622(86)85025-6 |
[162] | 38. Lando DY, Teif VB (2000) Long-range interactions between ligands bound to a DNA molecule give rise to adsorption with the character of phase transition of the first kind. J Biomol Struct Dyn 17: 903-911. doi: 10.1080/07391102.2000.10506578 |
[163] | 39. Teif VB, Rippe K (2010) Statistical-mechanical lattice models for protein-DNA binding in chromatin. J Phys Condens Matter 22: 414105. doi: 10.1088/0953-8984/22/41/414105 |
[164] | 40. Breslauer KJ, Freire E, Straume M (1992) Calorimetry: a tool for DNA and ligand-DNA studies. Methods Enzymol 211: 533-567. |
[165] | 41. Doyle ML (1997) Characterization of binding interactions by isothermal titration calorimetry. Curr Opin Biotechnol 8: 31-35. doi: 10.1016/S0958-1669(97)80154-1 |
[166] | 42. Jelesarov I, Bosshard HR (1999) Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J Mol Recognit 12: 3-18. doi: 10.1002/(SICI)1099-1352(199901/02)12:1<3::AID-JMR441>3.0.CO;2-6 |
[167] | 43. Haq I, Chowdhry BZ, Jenkins TC (2001)Calorimetric techniques in the study of high-order DNA-drug interactions. Methods Enzymol 340: 109-149. |
[168] | 44. Thomson JA, Ladbury JE (2004) Isothermal titration calorimetry: a tutorial. In Ladbury JE, Doyle ML, editors. Biocalorimetry 2. Applications of Calorimetry in the Biological Sciences, Chichester: John Wiley & Sons, 35-58. |
[169] | 45. Holdgate GA, Ward WH (2005) Measurements of binding thermodynamics in drug discovery. Drug Discov Today 10: 1543-1550. |
[170] | 46. Freyer MW, Lewis EA (2008) Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol 84: 79-113. doi: 10.1016/S0091-679X(07)84004-0 |
[171] | 47. Bhadra K, Maiti M, Kumar GS (2008) Berberine-DNA complexation: New insights into the cooperative binding and energetic aspects. Biochimica et Biophysica Acta 1780: 1054-1061. doi: 10.1016/j.bbagen.2008.05.005 |
[172] | 48. Hossain M, Kumar GS (2009) DNA intercalation of methylene blue and quinacrine: new insights into base and sequence specificity from structural and thermodynamic studies with polynucleotides. Mol Biosyst 5: 1311-1322. |
[173] | 49. Crane-Robinson C, Dragan AI, Read CM (2009) Defining the thermodynamics of protein/DNA complexes and their components using micro-calorimetry. Methods Mol Biol 543: 625-651. doi: 10.1007/978-1-60327-015-1_37 |
[174] | 50. Kabir A, Kumar GS (2013) Binding of the biogenic polyamines to deoxyribonucleic acids of varying base composition: base specificity and the associated energetics of the interaction. PLoS One 8: e70510. doi: 10.1371/journal.pone.0070510 |
[175] | 51. Kumar S, Spano MN, Arya DP (2014) Shape readout of AT-rich DNA by carbohydrates. Biopolymers 101: 720-732. doi: 10.1002/bip.22448 |
[176] | 52. Basu A, Kumar GS (2015) Thermodynamic characterization of proflavine-DNA binding through microcalorimetric studies. J Chem Thermodyn 87: 1-7. doi: 10.1016/j.jct.2015.03.009 |
[177] | 53. Basu A, Kumar GS (2015) Studies on the interaction of the food colorant tartrazine with double stranded deoxyribonucleic acid. J Biomol Struct Dyn 10: 1-8. |
[178] | 54. Chaires JB (1997) Possible origin of differences between van't Hoff and calorimetric enthalpy estimates. Biophys Chem 64: 15-23. |
[179] | 55. Chaires JB (2008) Calorimetry and thermodynamics in drug design. Annu Rev Biophys 37: 135-151. |
[180] | 56. Janjua NK, Siddiqa A, Yaqub A, et al. (2009) Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions. Spectrochim Acta A Mol Biomol Spectrosc 74: 1135-1137. doi: 10.1016/j.saa.2009.09.022 |
[181] | 57. Temerk YM, Ibrahim MS, Kotb M (2009) Voltammetric and spectroscopic studies on binding of antitumor Morin, Morin-Cu complex and Morin-beta-cyclodextrin with DNA. Spectrochim Acta A Mol Biomol Spectrosc 71: 1830-1836. doi: 10.1016/j.saa.2008.07.001 |
[182] | 58. Baranovskii SF, Chernyshev DN, Buchel’nikov AS, et al. (2011) Thermodynamic analysis of complex formation of ethidium bromide with DNA in water solutions. Biophysics 56: 214-219. doi: 10.1134/S0006350911020023 |
[183] | 59. Chaires JB (1997) Energetics of drug-DNA interactions. Biopolymers 44: 201-215. |
[184] | 60. Ren J, Jenkins TC, Chaires JB (2000) Energetics of DNA intercalation reactions. Biochemistry 39: 8439-8447. |
[185] | 61. Davies DB, Veselkov AN (1996) Structural and thermodynamical analysis of molecular complexation by 1H NMR spectroscopy. Intercalation of ethidium bromide with the isomeric deoxytetranucleoside triphosphates 5’-d(GpCpGpC) and 5’-d(CpGpCpG) in aqueous solution. J Chem Soc Faraday Trans 92: 3545-3557. |
[186] | 62. Kostjukov VV, Pahomov VI, Andrejuk DD, et al. (2007) Investigation of the complexation of the anti-cancer drug novantrone with the hairpin structure of the deoxyheptanucleotide 5′-d(GpCpGpApApGpC). J Mol Struct 843: 78-86. doi: 10.1016/j.molstruc.2006.12.036 |
[187] | 63. Wartell RM, Benight AS (1985) Thermal denaturation of DNA molecules: A comparison of theory with experiment. Phys Rep 126: 67-107. doi: 10.1016/0370-1573(85)90060-2 |
[188] | 64. Rice SA, Doty P (1957) The Thermal Denaturation of Desoxyribose Nucleic Acid. J Am Chem Soc 79: 3937-3947. doi: 10.1021/ja01572a001 |
[189] | 65. Guedin A, Lacroix L, Mergny JL (2010) Thermal melting studies of ligand DNA interactions. Methods Mol Biol 613: 25-35. doi: 10.1007/978-1-60327-418-0_2 |
[190] | 66. Goldstein G, Stern KG (1950) Experiments on the sonic, thermal, and enzymic depolymerization of desoxyribosenucleic acid. J Struc Chem 5: 687-708. |
[191] | 67. Thomas R (1954) Recherches sur la d'enaturation des acides desoxyribonucléiques. Biochimica et Biophysica Acta 14: 231-240. doi: 10.1016/0006-3002(54)90163-8 |
[192] | 68. Frank-Kamenetskii M (1965) Theory of the helix-coil transition for deoxyribonucleic acids with additional connections between the chains. Vysokomolekulyarnye Soedineniya 7: 354-361. |
[193] | 69. Frank-Kamenetskii M (1968) Consideration of helix-coil transition in homopolymers by the most probable distribution method. Mol Biol 2: 408-419. |
[194] | 70. Stewart CR (1968) Broadening by acridine orange of the thermal transition of DNA. Biopolymers 6: 1737-1743. doi: 10.1002/bip.1968.360061208 |
[195] | 71. Lazurkin YS, Frank-Kamenetskii MD, Trifonov EN (1970) Melting of DNA: its study and application as a research method. Biopolymers 9: 1253-1306. doi: 10.1002/bip.1970.360091102 |
[196] | 72. Barcelo F, Capo D, Portugal J (2002) Thermodynamic characterization of the multivalent binding of chartreusin to DNA. Nucleic Acids Res 30: 4567-4573. doi: 10.1093/nar/gkf558 |
[197] | 73. Zhong W, Yu JS, Liang Y (2003) Chlorobenzylidine-herring sperm DNA interaction: binding mode and thermodynamic studies. Spectrochim Acta A Mol Biomol Spectrosc 59: 1281-1288. doi: 10.1016/S1386-1425(02)00301-3 |
[198] | 74. Vardevanyan PO, Antonyan AP, Hambardzumyan LA, et al. (2013) Thermodynamic analysis of DNA complexes with methylene blue, ethidium bromide and Hoechst 33258. Biopolym. Cell 29: 515-520. |
[199] | 75. Hajian R, Guan Huat T (2013) Spectrophotometric Studies on the Thermodynamics of the ds-DNA Interaction with Irinotecan for a Better Understanding of Anticancer Drug-DNA Interactions. J Spectrosc 2013: 1-8. |
[200] | 76. Cooper A, Johnson CM (1994) Introduction to microcalorimetry and biomolecular energetics. Methods Mol Biol 22: 109-24. |
[201] | 77. Rosgen J, Hinz HJ (1999) Theory and practice of DSC mesuarements on proteins. In: Kemp RB, editor. Handbook of Thermal Analysis and Calorimetry, Vol.4, From Macromolecules to Man, Amsterdam: Elsevier, 63-108. |
[202] | 78. Bruylants G, Wouters J, Michaux C (2005) Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem 12: 2011-. doi: 10.2174/0929867054546564 |
[203] | 79. Spink CH (2008) Differential scanning calorimetry. Methods Cell Biol 84: 115-141. doi: 10.1016/S0091-679X(07)84005-2 |
[204] | 80. Bereznyak EG, Gladkovskaya NA, Khrebtova AS, et al. (2009) Peculiarities of DNA-proflavine binding under different concentration ratios. Biophysics 54: 574-580. doi: 10.1134/S0006350909050030 |
[205] | 81. Garbett N (2011) The Use of Calorimetry to Study Ligand-DNA Interactions. In: Aldrich-Wright J, editor. Metallointercalators, Vienna: Springer, 299-324. |
[206] | 82. Ising E (1925) Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik 31: 253-258. doi: 10.1007/BF02980577 |
[207] | 83. Poland DC, Scheraga HA (1970) The theory of helix coil transition, New York: Academic Press. |
[208] | 84. Peyrard M, Bishop AR (1989) Statistical mechanics of a nonlinear model for DNA denaturation. Phys Rev Lett 62: 2755-2758. |
[209] | 85. Dauxois T, Peyrard M, Bishop AR (1993) Entropy-driven DNA denaturation. Physical Review E 47: R44-R47. |
[210] | 86. Dauxois T, Peyrard M, Bishop AR (1993) Dynamics and thermodynamics of a nonlinear model for DNA denaturation. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 47: 684-695. |
[211] | 87. Grosberg AIU, Khokhlov AR (1994) Statistical physics of macromolecules, New York: AIP Press. |
[212] | 88. Frank-Kamenetskii MD, Prakash S (2014) Fluctuations in the DNA double helix: A critical review. Phys Life Rev 11: 153-170. |
[213] | 89. Cantor CR, Schimmel PR (1980) Biophysical chemistry. 3. The behavior of biological macromolecules, San Francisco, Freeman. |
[214] | 90. Zimm BH, Bragg JK (1959) Theory of the Phase Transition between Helix and Random Coil in Polypeptide Chains. J Chem Phys 31: 526-535. |
[215] | 91. Crothers DM (1971) Statistical thermodynamics of nucleic acid melting transitions with coupled binding equilibria. Biopolymers 10: 2147-2160. |
[216] | 92. McGhee JD (1976) Theoretical calculations of the helix-coil transition of DNA in the presence of large, cooperatively binding ligands. Biopolymers 15: 1345-1375. |
[217] | 93. Akhrem AA, Fridman AS, Lando D (1985) Theory of helix-coil transition of the heterogeneous DNA-heteroqeneous ligands complexes. Biopolym Cell 1: 171-179. |
[218] | 94. Lando D (1994) A theoretical consideration of the influence of selective binding of small ligands on DNA helix-coil transition. J Biomol Struct Dyn 12: 343-354. doi: 10.1080/07391102.1994.10508744 |
[219] | 95. Akhrem AA, Lando D (1979) Influence of ligands characteristic of selective binding to a certain type of base pairs on DNA helix-coil transition I. Model. Theory. Mol Biol (Mosk) 13: 1098-1109. |
[220] | 96. Akhrem AA, Lando D, Shpakovskii AG, et al. (1990) The effect of long-range interactions between adsorbed ligands on the DNA helix-coil transition. Mol Biol (Mosk) 24: 649-656. |
[221] | 97. Lando D, Ivanova MA, Akhrem AA (1980) Effect of changes in the stoichiometry of DNA-ligand complexes during heat denaturation of DNA on helix-coil transition parameters. Mol Biol (Mosk) 14: 1281-1288. |
[222] | 98. Karapetian AT, Mehrabian NM, Terzikian GA, et al. (1996) Theoretical treatment of melting of complexes of DNA with ligands having several types of binding sites on helical and single-stranded DNA. J Biomol Struct Dyn 14: 275-283. doi: 10.1080/07391102.1996.10508118 |
[223] | 99. Plum GE, Bloomfield VA (1990) Structural and electrostatic effects on binding of trivalent cations to double-stranded and single-stranded poly[d (AT)]. Biopolymers 29: 13-27. doi: 10.1002/bip.360290105 |
[224] | 100. Spink CH, Chaires JB (1997) Thermodynamics of the Binding of a Cationic Lipid to DNA. J Am Chem Soc 119: 10920-10928. doi: 10.1021/ja964324s |
[225] | 101. Leng F, Chaires JB, Waring MJ (2003) Energetics of echinomycin binding to DNA. Nucleic Acids Res 31: 6191-6197. doi: 10.1093/nar/gkg826 |
[226] | 102. Pasic L, Sepcic K, Turk T, et al. (2001) Characterization of parazoanthoxanthin A binding to a series of natural and synthetic host DNA duplexes. Arch Biochem Biophys 393: 132-142. doi: 10.1006/abbi.2001.2469 |
[227] | 103. Portugal J, Cashman DJ, Trent JO, et al. (2005) A new bisintercalating anthracycline with picomolar DNA binding affinity. J Med Chem 48: 8209-8219. doi: 10.1021/jm050902g |
[228] | 104. Liu Y-J, Wei X, Mei W-J, et al. (2007) Synthesis, characterization and DNA binding studies of ruthenium(II) complexes: [Ru(bpy)2(dtmi)]2+ and [Ru(bpy)2(dtni)]2+. Transit Metal Chem 32: 762-768. doi: 10.1007/s11243-007-0246-y |
[229] | 105. Peng B, Chen X, Du KJ, et al. (2009) Synthesis, characterization and DNA-binding studies of ruthenium(II) mixed-ligand complexes containing dipyrido[1,2,5]oxadiazolo[3,4-b]quinoxaline. Spectrochim Acta A Mol Biomol Spectrosc 74: 896-901. doi: 10.1016/j.saa.2009.08.031 |
[230] | 106. Barcelo F, Portugal J (2004) Elsamicin A binding to DNA. A comparative thermodynamic characterization. FEBS Lett 576: 68-72. |
[231] | 107. Barcelo F, Scotta C, Ortiz-Lombardia M, et al. (2007) Entropically-driven binding of mithramycin in the minor groove of C/G-rich DNA sequences. Nucleic Acids Res 35: 2215-2226. doi: 10.1093/nar/gkm037 |
[232] | 108. Marky LA, Blumenfeld KS, Breslauer KJ (1983) Calorimetric and spectroscopic investigation of drug-DNA interactions. I. The binding of netropsin to poly d(AT). Nucleic Acids Res 11: 2857-2870. |
[233] | 109. Remeta DP, Mudd CP, Berger RL, et al (1993) Thermodynamic characterization of daunomycin-DNA interactions: comparison of complete binding profiles for a series of DNA host duplexes. Biochemistry 32: 5064-5073. doi: 10.1021/bi00070a014 |
[234] | 110. Brandts JF, Lin LN (1990) Study of strong to ultratight protein interactions using differential scanning calorimetry. Biochemistry 29: 6927-6940. |
[235] | 111. Barone G, Catanzano F, Del Vecchio P, et al. (1995) Differential scanning calorimetry as a tool to study protein-ligand interactions. Pure Appl Chem 67: 1867-1872. |
[236] | 112. Dassie SA, Celej MS, Fidelio GD (2005) Protein Unfolding Coupled to Ligand Binding: Differential Scanning Calorimetry Simulation Approach. J Chem Educ 82: 85. doi: 10.1021/ed082p85 |
[237] | 113. Celej MS, Dassie SA, Gonzalez M, et al. (2006) Differential scanning calorimetry as a tool to estimate binding parameters in multiligand binding proteins. Anal Biochem 350: 277-284. doi: 10.1016/j.ab.2005.12.029 |
[238] | 114. Esposito D, Del Vecchio P, Barone G (2001) A thermodynamic study of herring protamine-DNA complex by differential scanning calorimetry. Phys Chem Chem Phys 3: 5320-5325. doi: 10.1039/b107218h |
[239] | 115. Dukhopelnikov EV, Bereznyak EG, Khrebtova AS, et al. (2013) Determination of ligand to DNA binding parameters from two-dimensional DSC curves. J Therm Anal Calorim 111: 1817-1827. doi: 10.1007/s10973-012-2561-6 |
[240] | 116. Straume M, Freire E (1992) Two-dimensional differential scanning calorimetry: Simultaneous resolution of intrinsic protein structural energetics and ligand binding interactions by global linkage analysis. Anal Biochem 203: 259-268. doi: 10.1016/0003-2697(92)90311-T |
[241] | 117. Freire E (1994) Statistical thermodynamic analysis of differential scanning calorimetry data: structural deconvolution of heat capacity function of proteins. Methods Enzymol 240: 502-530. doi: 10.1016/S0076-6879(94)40062-8 |
[242] | 118. Freire E (1995) Differential scanning calorimetry. Methods Mol Biol 40: 191-218. |
[243] | 119. Marky LA, Breslauer KJ (1987) Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers 26: 1601-1620. doi: 10.1002/bip.360260911 |
[244] | 120. Sturtevant JM (1987) Biochemical Applications of Differential Scanning Calorimetry. Annu Rev Phys Chem 38: 463-488. doi: 10.1146/annurev.pc.38.100187.002335 |
[245] | 121. Kawai Y (1999) Thermal transition profiles of bacteriophage T4 and its DNA. J Gen Appl Microbiol 45: 135-138. doi: 10.2323/jgam.45.135 |
[246] | 122. Tostesen E, Sandve GK, Liu F, et al. (2009) Segmentation of DNA sequences into twostate regions and melting fork regions. J Phys Condens Matter 21: 034109. doi: 10.1088/0953-8984/21/3/034109 |
[247] | 123. Duguid JG, Bloomfield VA, Benevides JM, et al. (1996) DNA melting investigated by differential scanning calorimetry and Raman spectroscopy. Biophys J 71: 3350-3360. |
[248] | 124. Movileanu L, Benevides JM, Thomas GJ (2002) Determination of base and backbone contributions to the thermodynamics of premelting and melting transitions in B DNA. Nucleic Acids Res 30: 3767-3777. doi: 10.1093/nar/gkf471 |
[249] | 125. Dukhopelnikov EV (2014) Modeling of heat absorption curves for ligand-competitor-DNA triple system. Biophysical Bulletin 31: 49-58. |