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Abstract: The review discusses the methods of thermodynamic analysis of reactions of non-covalent 
binding of biologically active compounds with DNA, which is a key constituent of cell chromatin. 
Knowledge of thermodynamic profile of ligand binding with nucleic acids is important for 
understanding the mechanism of medico-biological action of the currently existing drugs and for 
designing of new drugs with improved medical effect. Thermodynamic analysis of ligand binding with 
DNA is based on analysis of experimentally measured changes of Gibbs free energy (ΔG), enthalpy 
(ΔH), entropy (ΔS) and heat capacity (ΔCр). Right selection of the methods of measurement of these 
parameters and understanding of limitations of currently existing approaches for numerical data 
analysis are crucially important for correct interpretation of the obtained results and getting insight into 
the mechanism of drug-DNA interaction. In the present work the currently existing methods of 
determination of thermodynamic parameters of ligand binding with DNA were divided into two main 
groups. The first group is associated with the approaches used in cases when the heating of the system 
does not cause melting of the biopolymer. The main focus is given to the second group of the methods 
which are based on description of helix-coil transition of DNA-ligand complexes with further 
comparison of the same transition for «free» biopolymer. The methods of computation of the binding 
parameters utilizing the Ising-type models and models based on the equations of chemical equilibrium 
are discussed. 

Keywords: DNA; ligand; melting thermodynamics; binding parameters; calorimetry; UV-
spectroscopy 
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1.  Introduction  

DNA is the main part of the chromatin and it carries the very important functions of storage, transfer 
and implementation of genetic information. Due to significant role of chromatin and DNA in living 
organisms the development of methods for targeting them with an aim to achieve the desired medical and 
biological effect is of great importance. One of the most effective ways to implement such effect is the 
modification of the genetic material by biologically active compounds, particularly, antibiotics and 
mutagens, which promote disruption and suppression of vital processes, viz. replication, transcription and 
translation [1–4]. 

Both, the protein part of chromatin (histones) [5–7] and DNA [8–11], can be the target for small 
molecules (ligands). However, numerous studies have shown that the interaction of anticancer drugs 
occurs mostly with the DNA molecule, and the primary role of histones is to reduce the DNA regions, 
which are available for ligand binding [10–14]. Thus, the DNA-ligand system serves as a good 
model to study the action of biologically active compounds on chromatin. 

Since the therapeutic effect of many DNA-binding drugs correlates with thermodynamic 
parameters of complex formation [15–23], one of the important tasks of modern molecular biophysics 
is to elucidate the thermodynamics of such interaction. New data about the thermodynamics of 
molecular interactions of ligands with DNA are necessary for understanding the mechanism of 
medical and biological action of existing drugs and for creation of new more effective ones. 

This review focuses on critical analysis of modern theoretical approaches for determination of the 
thermodynamic parameters of DNA-ligand binding. 

2.  General Approach to Determination of Thermodynamic Parameters of DNA-ligand Binding 

The first stage of the thermodynamic analysis of DNA-ligands interaction is the determination of 
the equilibrium binding constants Kbind (Gibbs free energy (ΔGbind)). The general approach to obtain 
Kbind is measuring of the dependence of a certain experimentally observed parameter ξexp (e.g., 
absorption in spectroscopy, chemical shift in NMR, etc.) on the concentration of solution   
components [24–33]. To analyze the experimental titration curve the binding models are used [34–39]. 
Such models provide theoretical functional relationship of ξexp with quantitative characteristics of 
dynamic equilibrium in solution. These characteristics are the DNA and ligand concentrations, and the 
parameters of their interaction, viz. the binding constant and some other characteristics, which depend 
on the model selected (e.g., the binding site size n, degree of cooperativity, etc.). 

Knowledge of enthalpy (ΔHbind) and entropy (ΔSbind) contributions to the free energy of binding is 
also very important for understanding the driving forces of complex formation. The heat capacity 
change upon binding, ΔCp,bind, allows one to get insight into the mechanism of complex formation. 

All these parameters can be determined by isothermal titration calorimetry (ITC) from direct 
measurements of thermal effect of DNA-ligand binding [40–46]. To analyze the calorimetric titration 
curve one of the following binding models is usually used: 1) the ligand binds with one-type site; 2) the 
ligand binds with two-type sites independently; 3) the ligand saturates three sites sequentially [46].The 
values of Kbind, n and ΔHbind are determined by comparison of theoretical and experimental 
dependences of thermal effect on the DNA and ligand concentrations. The ΔCp,bind value is calculated 
from experiments carried out at different temperatures [47–53]. Although ITC allows obtaining the full 
set of binding parameters, it is not applicable to DNA-ligand systems characterized by very high or low 
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binding constants. In such cases the appropriate titration curve cannot be obtained because the heat of 
reaction commensurate with the noise of calorimeter [46]. 

To determine the enthalpy and entropy of the ligand binding with DNA an indirect method can 
be also used. Such method is based on van't Hoff equation, which sets relationship between the 
equilibrium binding constant, Kbind, and temperature [43,54,55]: 
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H
lnK bindbind

bind





 . (1)   

The input data for analysis are the values of equilibrium constants, Kbind(T), is commonly 
obtained from titration experiments at different temperatures [56–58]. An approximation of the 
temperature dependence of logarithm of the binding constant allows to determine coefficients of 
linear regression and to calculate the binding enthalpy and entropy. 

It should be noted that this method can be used only if the enthalpy and entropy dependences on 
temperature are neglected. This assumption is valid only for narrow temperature range and/or in case 
of negligible heat capacity change of the binding reaction. However, the binding of small molecules 
with DNA may be characterized by a significant change of the ΔCp,bind value [59,60], and the 
dependence of lnKbind on 1/T is not linear [54,55]. 

Also the DNA-ligand binding enthalpy can be estimated by van't Hoff formalism directly from 
the temperature changes of the experimental value, ξexp, when the concentrations of the interacting 
species are known. In this case, the calculation of the binding constant is not required. The value of 
equilibrium constant is replaced with the temperature dependence of Kbind according to equation (1). 
Hence, the function ξexp(T) contains two unknown parameters, viz. ΔHbind and ΔSbind, which can be 
determined by minimization of the deviations of the calculated from experimental values of ξ. This 
method was successfully applied to determine the enthalpy and entropy changes of ligand binding to 
short DNA oligonucleotide sequences by means of NMR spectroscopy [61,62]. 

It is worth noting that the strong exponential relationship between Kbind and the search parameters, 
ΔHbind and ΔSbind (equation 1), causes significant errors in their determination. Another source of large 
error in the values of binding enthalpy and entropy in equation (1) is the fact that ξexp experiences little 
changes in the temperature range up to the complex melting. By these reasons this method is rarely 
used in thermodynamic analysis of the DNA-ligand binding reactions. 

An alternative approach for calculation of the thermodynamic parameters of DNA-ligand binding 
is the analysis of ξexp changes in the temperature range where a helix-coil transition (or melting) of 
DNA occurs. During the melting the DNA double helix dissociates into individual strands which is 
accompanied by breakage of hydrogen bonds between complementary base pairs, distortion of 
interplanar stacking interactions and changings of ion-hydration environment [63]. Therefore, 
significant alteration of some physical properties of DNA and its complexes, and, consequently, of 
experimental ξexp values, is observed [64,65]. By that reason analysis of experimental data measured in 
the melting range allows determining the values of the fundamental thermodynamic parameters of 
DNA-ligand systems more accurately. Let us consider these approaches in more detail. 
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3.  Methods of Determination of the Binding Parameters Based on Analysis of DNA-ligand 
Melting 

The basic experimental methods extensively used now for the study of the melting of DNA-
ligand complexes and for determination of the thermodynamic parameters are UV-spectroscopy and 
differential scanning calorimetry (DSC). 

At helix-coil transition an increase of the absorption of the DNA molecule by 30–40% in the 
ultraviolet region of the spectrum (λ = 250–270 nm) is observed [66,67]. This allows determining the 
melting temperature and melting range of DNA with high degree of accuracy. Back in the 60-ies of 
the last century it was shown that the addition of the ligand leads to significant changes in these 
parameters [68–71]. To determine the binding constants and binding types, analysis of the melting 
temperature shift and the change of melting range width on DNA-ligand interaction are commonly 
used [72–75]. 

Another method of studying the helix-coil transition is a differential scanning calorimetry. This 
method allows to determine directly the thermal effects, which accompany the conformational 
transitions of biological macromolecules and their complexes [76–81].  

However, in order to calculate thermodynamic parameters of DNA-ligand interaction from 
experimental data of complex melting the modeling approaches describing the helix-coil transition in 
these systems are needed. 

Majority of the existing approaches the melting of DNA-ligand complexes is considered as two 
independent equilibrium processes, viz. ligand dissociation from the double-stranded DNA and the 
denaturation of the biopolymer (fig. 1). 

 

Figure 1. Schematic representation of the melting of DNA-ligand complex. 

These approaches differ in DNA site size for which the melting and binding equations are written. 
Thus, in the Ising-like models the melting is described for each base pair. Alternative approach is based 
on equations of chemical equilibrium and considers the melting of extended DNA region. Both 
approaches are discussed in detail below. 
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3.1. Description of the melting of DNA-ligand complexes using Ising-like models 

In early theoretical models of the melting of DNA-ligand complexes the DNA molecule was 
represented as an infinitely long homogeneous polynucleotide, wherein each unit may be in open or 
closed state. The energy required for base pair opening is determined only by the state of neighboring 
pairs. Since such description appears to be similar to the Ising model of ferromagnetism [82], these 
phenomenological approaches applied in various forms for DNA melting investigation [63,83–88], 
were called the Ising-like models. They include, for example, the model of “zipper”, in which the 
helical and the coil regions of DNA may exist in the chain simultaneously during the helix-coil 
transition, but only one helical region is formed in each chain [89]. In the matrix method of the Ising 
model it is assumed that the coil and the helical regions may be located anywhere in the chain and in 
any combination. Their sizes are determined by the cooperativity factor σ. Each unit in the chain is 
associated with a matrix of statistical weights of states. The most simple and straightforward polymer 
chain melting theory based on Ising model was developed by Zimm and Bragg [90]. 

Ligand molecules interact with helical and coil regions of the polymer in solution altering their 
free energy. To describe the process of DNA-ligand melting the series is written in which each term 
corresponds to a single act of one base pair opening and the single act of ligand binding to a base pair. 
Most complete theoretical analysis of the DNA-ligand melting using Ising-like models was given by 
McGhee, Frank-Kamenetskii and Crothers [68,69,71,91,92]. 

The difference between these approaches is displayed only when the discrete approach for 
mathematical description of the system is replaced with a continuous. Thus, Frank-Kamenetskii used 
the most probable distribution method [68,69,71], Crothers used direct thermodynamic approach [91], 
McGhee used the method of generating functions [92]. These methods are physically equivalent, but 
utilize different mathematical tools. The obtained equations are written in general and most strict 
form, allowing to calculate theoretical melting curve for DNA-ligand complexes at any concentration 
of the ligand using as an input the experimental melting curve of free DNA. 

Theoretical description of DNA-ligand melting by the Ising-like models allows taking into 
account structural variety of the lattice and the whole set of complex interactions in the system. For 
example, within the framework of Frank-Kamenetskii's approach melting of DNA with arbitrary 
primary structure on non-specific ligand binding [68,69,71], melting of DNA complexes with 
selectively binding ligands [93,94] and melting with account for the interaction between the adsorbed 
ligands [95,96], were analyzed. The effect of ligands’ redistribution during the melting process [97] 
and the existence of two binding types [98] were also taken into account with respect to the 
parameters of helix-coil transition. As a result the theoretical dependences of the melting temperature 
shifts (ΔTmelt) and the changes of melting range width (δΔT) on the relative ligand concentration 
were obtained. It allowed to carry out a qualitative analysis of experimental dependences and to 
suggest possible binding mechanisms in the DNA-ligand systems. 

Quantitative analysis of experimental data within the framework of Ising-like models was 
carried out using McGhee's equations [92]. The parameters of cooperative binding of extended 
ligands with DNA were calculated by this method. Subsequently, these equations form the basis of a 
computer optimization program which allows calculating the DNA-ligand binding parameters by 
fitting the melting curves [99,100,101]. However, the large number of search parameters results in 
significant error in their estimation. Especially it becomes apparent for small values of the binding 
constant and large binding site size. Unambiguous solution of this problem can be achieved only if 
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the values of some search parameters are determined independently by additional experimental 
method [100]. 

In summary it may be concluded that the Ising-like models have been developed mainly for 
theoretical analysis of the influence of binding parameters on the shape of DNA-ligand melting curves. 
Nevertheless, statistical-thermodynamic description of the melting of DNA-ligand complexes leads to 
the problem of big number of search quantities in the final expressions. It limits the application of such 
models for calculation of binding parameters from experimental melting curves. 

3.1.1. Calculation of DNA-ligand binding parameters at full saturation of polymeric lattice by ligand 
molecules 

In practice the Ising-like models are extensively used to calculate the DNA-ligand binding 
parameters from experimental melting curves under condition of nearly full saturation of lattice by 
ligand molecules. In such case there no statistical distribution of the ligands along the polymer lattice 
needs to be accounted for [102–105]. It is also assumed that the ligands interact with DNA in 
noncooperative and unspecific manner. In this case the McGhee's, Frank-Kamenetskii's and Crothers's 
equations [68,69,71,91,92] are transformed into similar analytical expression for the dependence of 
DNA melting temperature shift on the ligand concentration: 
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where T0
melt and ΔHmelt are melting temperature and enthalpy change on melting of free DNA, 

respectively; Tmelt is the melting temperature of DNA-ligand complex; Kbind and n are the equilibrium 

constants and site sizes of ligand binding to double-stranded DNA, respectively; 
ssbindK and nss are 

the equilibrium constants and site sizes of ligand binding to single-stranded DNA, respectively; 

meltTfree,L is the concentration of free ligand at Tmelt. 

To explain the experimentally observed high temperature shift it is assumed that the ligand does 
not bind to single-stranded polynucleotide and the equation (2) is simplified to: 
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The theoretical approaches of McGee, Frank-Kamenetskii and Crothers [68,69,71,91,92] were 
initially developed for the analysis of the DNA-ligand melting curves measured 
spectrophotometrically in the ultraviolet region of spectrum. Nevertheless, the equation (3) is written 
for the full saturation of lattice by the ligand and it can also be applied for binding parameters 
calculation from DSC data [50,101]. 

Calculation of the DNA-ligand binding parameters from melting data using equation (3) can be 
carried out as follows. T0

melt and Tmelt values are determined from the melting curves measured by 
means of UV spectroscopy or DSC. The ΔHmelt value is calculated from heat absorption curves of 
free DNA. 
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To determine the free ligand concentration at melting temperature it is assumed that the half of 
bound ligand (Lbind) at Tmelt had dissociated from the polymer. Many authors use to calculate the 

value of 
meltTfree,L as CL,tot/2 [72,106,107]. However, at high relative concentration of the ligand this 

estimation becomes too approximate because CL,tot >> Lbind especially at low values of the binding 
constants [92]. 

The more accurate approach is to compute 
meltTfree,L  assuming that at room temperature certain 

fraction of the ligand is unbound [80]: 

2982

1
 bind,totLmeltT free, LC=L  . (4)   

Using the values of T0
melt, Tmelt, ΔHmelt, n and

meltTfree,L  it is easy to obtain the binding constant at 

melting temperature from equation (3). 
The binding enthalpy can be determined from DSC data according to the Hess's law [55,108]. If 

the difference between the enthalpy of DNA complex melting (ΔHDNA-L) and the enthalpy of free 
DNA melting (ΔHDNA) is caused only by the ligand, L, interaction with double-stranded regions, the 

binding enthalpy at melting temperature, 
meltbind,TH δ , can be defined as: 

DNALDNAmeltbind, T HH=H   δ . (5)   

The value of 
meltbind, TH δ  is expressed in mole of bases. It is convenient to normalize it per 

mole of ligand: 

rH=H
meltTbind,meltTbind, /  . (6)   

The value of r is defined as the ratio of the bound ligand concentration to the total DNA 
concentration. 

Usually the binding parameters at room temperature are of major interest. The binding enthalpy 
at Т = 298 °C is calculated by the equation: 

 meltbindp,meltTbind,bind TTC+H=TH  )( . (7)   

The ΔСр,bind value can be determined by ITC [47-53] or estimated by van't Hoff's equation from 
the dependence of the logarithm of binding constant on reverse temperature [42,49,50,51,58]. 

The binding constant at T = 298 °C is determined taking into account the equation (7): 
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The method of calculation of the binding parameters reviewed above allows to evaluate the 
DNA-ligand binding constant and enthalpy quite easy and it is therefore used        
extensively [72,101,106,107,109]. 

Nevertheless, it has several disadvantages and limitations: 
 Equation (3) is not applicable in a wide range of DNA/ligand concentration ratios. It can be 

used only at full saturation of lattice by ligand or if the ligand binds to one DNA base pair. This 
is due to the fact that on derivation of this equation the mixing energy upon ligand binding and 
the energy change on ligand redistribution during the melting process were ignored. However, 
the condition of full lattice saturation is often not the case in practice, e.g. when the binding 
constants have low values or binding site size is large. Furthermore, the melting temperature of 
DNA on addition of large amounts of ligand usually becomes rather high and the end of the 
melting cannot be observed in spectrophotometric and DSC experiment. 

 Equation (3) ignores the binding constant dependence on temperature. It causes an error of 
determination of the free ligand concentration at melting temperature. 

 This calculation method neglects the dependence of DNA melting enthalpy on temperature 
whereas the binding of ligand results in substantial increase of the DNA melting temperature. The 
neglect of the DNA heat capacity changes during the melting leads to overestimated values of 
ΔНbind and Kbind (equations (5) and (8)). 

 In order to calculate the binding parameters according to equations (3)–(8) the information from 
different independent experimental methods is required (for example, DSC, UV-spectroscopy and 
ITC). These data, however, cannot be obtained under the same experimental conditions, for 
example, at similar concentrations. 

3.2. Description of the DNA-ligand melting process by the equations of chemical equilibria 

The binding parameters of ligands with biopolymers can be determined from DSC melting 
study using the equations of chemical equilibria (the law of mass action and the mass balance 
equations). Originally such approach was proposed and widely used for analysis of heat absorption 
curves of some protein complexes with ligands [110–113]. This is because the denaturation of single 
domain proteins follows two-state model, and the complexes with ligands are formed on independent 
binding sites. Later this approach was extended for calculation of the ligand binding parameters with 
high-polymer DNA molecules [114,115]. 

According to statistical thermodynamics the average excess enthalpy of equilibrium system can 
be represented as [77,114–118]: 

   THTP=H j

l

j
j  

0

, (9) 

where Pj(T) is the relative population of the j state on transition and ΔHj(T) is the enthalpy change 
associated with the transition between the reference state and the j state. 

The average excess heat capacity <δCp> measured in DSC experiment is a derivative from the 
average excess enthalpy <ΔH> at constant pressure: 
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To describe calorimetric behaviour of the DNA-ligand system it is necessary to obtain the 
expressions for Pj and ΔHj. In this model the melting of complexes is considered as two independent 
equilibrium processes: dissociation of the ligand from the double-stranded DNA and the helix-coil 
transition of biopolymer. 

Generally the double-stranded state of DNA is defined as a reference state, with respect to 
which all thermodynamic parameters of the system are calculated [113]. In this case, the DNA 
transition from the double-stranded to single-stranded state is characterized by the melting enthalpy 
ΔHmelt, and the ligand binding with double-stranded DNA is characterized by the binding enthalpy 
ΔHbind. 

The chemical equilibria equations are used for calculation of the relative populations of single-
stranded DNA and the DNA-ligand complexes. 

The theory of chemical equilibria is applicable only for the DNA regions which melt by two-
state model [76,119–122]. Therefore, in this approach the high-polymer DNA molecule is considered 
as an assembly of cooperative units and their melting can be described by the equation: 

dsDNAm→2ssDNAm                     
 
 m

m
melt dsDNA

ssDNA
=K

2

, (11) 

where dsDNAm is the cooperative unit of the double-stranded DNA, which consists of m base pairs; 
ssDNAm is a fragment of the single-stranded DNA, which consists of m bases; Kmelt is a macroscopic 
equilibrium melting constant of the DNA cooperative units. 

The cooperative unit size is determined from the heat absorption curve as a ratio of model-
dependent van't Hoff enthalpy, ΔHvH, to calorimetric enthalpy, ΔHmelt, calculated as an area under 
experimental curve (ΔHvH = 2m·ΔHmelt) [121,123,124]. 

The temperature dependence of the melting constant is given as: 
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where ΔCp,melt is the heat capacity change upon DNA melting; CDNA is the total DNA concentration. 
The binding site size for the majority of known ligands (n) is substantially smaller than the size 

of DNA cooperative unit. Hence, the DNA-ligand interaction can be presented in terms of stepwise 
saturation: 

dsDNAm - Li-1+ L→ dsDNAm - Li             
]][[

][

LdsDNA

L - dsDNA
=K

m

m
bind,1 , (13) 

where L is the free ligand; dsDNAm–Li is the complex of DNA cooperative unit with i ligand 
molecules (1 ≤ i ≤ m / n); Kbind,i is the macroscopic association constant for each binding step. 
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The relationship between the microscopic (kbind) and the macroscopic binding constants is 
determined taking into account the statistical distribution of the ligands on finite one-dimensional 
lattice [35]: 
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According to the melting and binding equations given above, the relative populations of single-
stranded DNA and DNA-ligand complexes are defined as: 
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To calculate the concentrations of single-stranded DNA and dsDNAm–Li complexes, the mass 
balance equations for DNA (CDNA) and ligand (СL) molecules are used: 
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The concentrations of dsDNAm–Li and dsDNAm components are expressed in terms of the single-
stranded DNA concentration using the mass action laws (equations (11) and (13)) and the statistical 
distribution of the ligands (equation (14)): 
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The concentration of single-stranded DNA [ssDNAm] at any temperature is determined by 
solving equations (16)–(19) with the account for the temperature dependence of the binding constant 
by equation (8). 

Employing the temperature dependences of the melting and binding enthalpies (equation 7), the 
expression for the heat capacity change upon complex melting can be written as: 
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where ΔCp,bind is the heat capacity change upon binding. 
The system of equations (7), (8), (12), (16)–(20) allows obtaining the full set of binding 

parameters in the DNA-ligand system by fitting experimental heat absorption curves. 
In the first step of calculations the melting parameters of the DNA in the absence of ligand (i = 0) 

are determined from the heat absorption curve of free DNA. The calculated values of Тmelt, 
ΔHmelt(Тmelt), m, ΔCp,melt are maintained constant while the heat absorption curves of the DNA-ligand 
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complexes are being fitted. The adjustable parameters are kbind, n, ΔHbind, ΔCp,bind as well as the 
concentration of free ligand. These parameters are determined by minimizing the standard deviation 
of the theoretical and experimental heat absorption curves at different DNA and ligand concentration 
ratios [115]. 

The correct use of this method requires the value of the size of cooperative unit to substantially 
exceed the binding site size. In cases of low-cooperative DNA helix-coil transition and/or DNA 
binding of large ligands, the influence of end-effects leads to errors in binding parameters 
determination. 

It should also be noted that the parameters, Kbind and n, as well as ΔHbind and ΔCp,bind, are 
interdependent. Nevertheless, these parameters can be determined uniquely by analysis of the excess 
heat capacity function in wide temperature range, since Kbind and ΔHbind are temperature dependent, 
whereas n and ΔCp,bind are temperature independent. Therefore, the necessary condition in order to 
apply this method is the presence of significant temperature shift upon ligand binding to DNA. 

4.  Conclusion 

The paper has reviewed two basic methods of calculation of DNA-ligand binding parameters 
from melting data. 

The first method is based on Ising-like models. The corresponding equations describing the 
melting of the DNA-ligand complexes are written in general form, they are rigorous and do not 
contain significant limitations in their application. However, the final expressions are difficult to 
implement in computations and, by that reason, this approach has not got wide application for 
calculation of the binding parameters from experimental temperature measurements in DNA-ligand 
systems. The most frequent application of the Ising-like method was noted only in melting curve 
analysis at full saturation of lattice by ligand. In this case the final equations are becoming simple. 
However, the set of limitations introduced during the derivation of these equations lead to errors in 
the binding parameters determination. 

In the second method the DNA-ligand melting is described by the equations of chemical 
equilibria. The main limiting factors for application of this approach are the low-cooperativity of the 
DNA helix-coil transition and/or a large value of the ligand binding site. In these cases, the end-
effects are playing significant role in the binding parameters calculation. 

The usefulness of this approach is the possibility of easy modification of the basic equations 
enabling to describe more complex DNA-ligand interactions, e.g. multimode and competitive 
binding [125]. In addition, the proposed system of equations allows calculating the concentrations of 
free and bound ligand at any temperature. In this approach it is easy to obtain the functional 
dependence of any experimental parameter, ξexp(T), on Lbind. The value of ξexp(T) can, in turn, be 
determined by common methods, e.g. spectrophotometry, luminescence, etc. 

In summary it is worth noting that the choice of experimental methods for thermal investigations 
and numerical data processing for each specific DNA-ligand system are depended on many factors, 
such as the type of DNA used, the size of the ligand, the DNA/ligand concentration ratio, the types of 
complexes formed in the system, etc. It is always necessary to keep in mind the existing limitations 
imposed by the properties of the objects under study and the introduced model assumptions. These 
factors are very important for accurate calculation of the binding parameters and subsequent 
interpretation of the results. 
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