Citation: M. TarikulIslam, M. AliAkbar, M. Abul Kalam Azad. Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative[J]. AIMS Mathematics, 2018, 3(4): 625-646. doi: 10.3934/Math.2018.4.625
[1] | K.B. Oldham, J. Spanier, The Fractional Calculus, New York: Academic Press, 1974. |
[2] | I. Podlubny, Fractional Differential Equations, Math. Sci. Eng., 198 (1999) 1-340. |
[3] | A. Coronel-Escamilla, J. F. Gomez-Aguilar, L. Torres, et al. A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel, Physica A., 491 (2018), 406-424. |
[4] | A. Atangana, J. F. Gómez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu, Numer. Meth. Part. D. E., (2017). |
[5] | D. Baleanu, M. Inc, A. Yusuf et al. Time fractional third-order evolution equation: Symmetry analysis, explicit solutions and conservation laws, J. Compt. Nonliner Dynam., 13 (2018), 021011. |
[6] | A. Akgul, D. Baleanu, M. Inc, et al. On the solutions of electrohydrodynamic flow with fractional differential equations by reproducing kernel method, Open. Phys., 14 (2016), 685-689. |
[7] | E. C. Aslan, M. Inc, Soliton solutions of NLSE with quadratic-cubic nonlinearity and stability analysis, Wave. Random. Complex., 27 (2017), 594-601. |
[8] | M. Inc, E. Ulutas, A. Biswas, Singular solitons and other solutions to a couple of nonlinear wave equations, Chin. Phys. B., 22 (2013), 060204. |
[9] | I. E. Inan, Y. Ugurlu, M. Inc, New applications of the (G'/G, 1/G)-expansion method, Acta. Phys. Pol. A., 128 (2015), 245-252. |
[10] | M. N. Alam, M. A. Akbar, The new approach of the generalized (G'/G, 1/G)-expansion method for nonlinear evolution equations, Ain Shams Eng. J., 5 (2014), 595-603. |
[11] | D. Baleanu, Y. Ugurlu, M. Inc and B. Kilic, Improved (G'/G, 1/G)-expansion method for the time fractional Biological population model and Cahn-Hilliard equation, J. Comput. Nonliner. Dynam., 10 (2015), 051016. |
[12] | M. T. Islam, M. A. Akbar, M. A. K. Azad, The exact traveling wave solutions to the nonlinear space-time fractional modified Benjamin-Bona-Mahony equation, J. Mech. Cont. Math. Sci., 13 (2018), 56-71. |
[13] | B. Zheng, Exp-function method for solving fractional partial differential equations, Sci. World J., 2013 (2013), 465723. |
[14] | O. Guner, A. Bekir, H. Bilgil, A note on Exp-function method combined with complex transform method applied to fractional differential equations, Adv. Nonlinear Anal., 4 (2015), 201-208. |
[15] | J. F. Alzaidy, The fractional sub-equation method and exact analytical solutions for some fractional PDEs, Am. J. Math. Anal., 1 (2013), 14-19. |
[16] | H. Yépez-Martinez, J. F. Gómez-Aguilar, D. Baleanu, Beta-derivative and sub-equation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion, Optik, 155 (2018), 357-365. |
[17] | H. Yépez-Martinez, J. F. Gómez-Aguilar, A. Atangana, First integral method for nonlinear differential equations with conformable derivative, Math. Modell. Nat. Phenom., 13 (2018), 14. |
[18] | H. Yépez-Martinez, J. F. Gómez-Aguilar, I. O. Sosa, et al. The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, Rev. Mex. Fis., 62 (2016), 310-316. |
[19] | M. Inc, I. E. Inan, Y. Ugurlu, New applications of the functional variable method, Optik, 136 (2017), 374-381. |
[20] | H. Bulut, H. M. Baskonus, Y. Pandir, The modified trial equation method for fractional wave equation and time fractional generalized Burgers equation, Abstr. Appl. Anal., 2013 (2013), 636802. |
[21] | Y. Pandir, Y. Gurefe, New exact solutions of the generalized fractional Zakharov-Kuznetsov equations, Life Sci. J., 10 (2013), 2701-2705. |
[22] | N. Taghizadeh, M. Mirzazadeh, M. Rahimian et al. Application of the simplest equation method to some time fractional partial differential equations, Ain Shams Eng. J., 4 (2013), 897-902. |
[23] | C. Chen, Y. L. Jiang, Lie group analysis method for two classes of fractional partial differential equations, Commun. Nonlinear Sci., 26 (2015), 24-35. |
[24] | G. C. Wu, A fractional characteristic method for solving fractional partial differential equations, Appl. Math. Lett., 24 (2011), 1046-1050. |
[25] | A. R. Seadawy, Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves, Eur. Phys. J. Plus, 132 (2017), 29. |
[26] | A. Akbulut, M. Kaplan, A. Bekir, Auxiliary equation method for fractional differential equations with modified Riemann-Liouville derivative, Int. J. Nonlin. Sci. Num., 17 (2016). |
[27] | W. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47 (2008), 204-226. |
[28] | S. Momani, Z. Odibat, V. S. Erturk, Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation, Phys. Lett. A., 370 (2007), 379-387. |
[29] | Y. Hu, Y. Luo, Z. Lu, Analytical solution of the linear fractional differential equation by Adomian decomposition method, J. Comput. Appl. Math., 215 (2008), 220-229. |
[30] | A. M. A. El-Sayed, S. H. Behiry, W. E. Raslan, Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation, Comput. Math. Appl., 59 (2010), 1759-1765. |
[31] | M. Inc, The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476-484. |
[32] | G. H. Gao, Z. Z. Sun, Y. N. Zhang, A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions, J. Comput. Phys., 231 (2012), 2865-2879. |
[33] | K. A. Gepreel, The homotopy perturbation method applied to nonlinear fractional Kadomtsev-Petviashvili-Piskkunov equations, Appl. Math. Lett., 24 (2011), 1428-1434. |
[34] | J. F. Gómez-Aguilar, H. Yépez-Martinez, J. Torres-Jimenez et al. Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Differ. Equations, 2017 (2017), 68. |
[35] | V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martinez, et al. Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv. Differ. Equations, 2016 (2016), 164. |
[36] | H. Yépez-Martinez, J. F. Gómez-Aguilar, Numerical and analytical solutions of nonlinear differential equations involving fractional operators with power and Mittag-Leffler kernel, Math. Model. Nat. Phenom., 13 (2018), 13. |
[37] | E. C. Aslan, M. Inc, Numerical solutions and comparisons for nonlinear time fractional Ito coupled system, J. Comput. Theor. Nanos., 13 (2016), 5426-5431. |
[38] | M. Inc, Some special structures for the generalized nonlinear Schrodinger equation with nonlinear dispersion, Wave. Random. Complex., 23 (2013), 77-88. |
[39] | R. Khalil, M. Al Horani, A. Yousef et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. |
[40] | A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889-898. |
[41] | M. Eslami, H. Rezazadeh, The first integral method for Wu-Zhang system with conformable time-fractional derivative, Calcolo, 53 (2016), 475-485. |
[42] | Y. Cenesiz, A. Kurt, The new solution of time fractional wave equation with conformable fractional derivative definition, J. New Theory, 7 (2015), 79-85. |
[43] | M. Boiti, J. Leon and P. Pempinelli, Spectral transform for a two spatial dimension extension of the dispersive long wave equation, Inverse Probl., 3 (1987), 371-387. |
[44] | R. L. Mace, M. A. Hellberg, The Korteweg-de Vries-Zakharov-Kuznetsov equation for electron-acoustic waves, Phys. Plasmas, 8 (2001), 2649-2656. |
[45] | O. Guner, E. Aksoy, A. Bekir et al. Different methods for (3+1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation, Comput. Math. Appl., 71 (2016), 1259-1269. |
[46] | A. K. Khalifaa, K. R. Raslana, H. M. Alzubaidi, A collocation method with cubic B-splines for solving the MRLW equation, J. Comput. Appl. Math., 212 (2008), 406-418. |
[47] | K. R. Raslan, Numerical study of the Modified Regularized Long Wave (MRLW) equation, Chaos, Solitons Fractals, 42 (2009), 1845-1853. |
[48] | K. R. Raslan, S. M. Hassan, Solitary waves for the MRLW equation, Appl. Math. Lett., 22 (2009), 984-989. |
[49] | M. Kaplan, A. Bekir, A. Akbulut, et al. The modified simple equation method for nonlinear fractional differential equations, Rom. Journ. Phys., 60 (2015), 1374-1383. |
[50] | A. B. E. Abdel Salam, E. A. E. Gumma, Analytical solution of nonlinear space-time fractional differential equations using the improved fractional Riccati expansion method, Ain Shams Eng. J., 6 (2015), 613-620. |
[51] | E. Fan, H. Zhang, A note on the homogeneous balance method, Phys. Lett. A., 246 (1998), 403-406. |