Citation: Yongda Wang. Existence result for a nonlinear nonlocal system modeling suspension bridges[J]. AIMS Mathematics, 2018, 3(4): 608-624. doi: 10.3934/Math.2018.4.608
[1] | G. Arioli, F. Gazzola, On a nonlinear nonlocal hyperbolic system modeling suspension bridges, Milan J. Math., 83 (2015), 211-236. |
[2] | G. Arioli, F. Gazzola, Torsional instability in suspension bridges: the Tacoma Narrows Bridge case, Commun. Nonlinear Sci., 42 (2017), 342-357. |
[3] | J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90. |
[4] | C. Baiocchi, Soluzioni ordinarie e generalizzate del problema di Cauchy per equazioni differenziali astratte non lineari del secondo ordine in spazi di Hilbert, Ricerche Mat., 16 (1967), 27-95. |
[5] | H. Brezis, Operateurs maximaux monotones, North-Holland, Amsterdam, 1973. |
[6] | E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. |
[7] | R. Courant, D. Hilbert, Methods of mathematical physics, Intersciences Publishers, New York, 1953. |
[8] | A. Falocchi, Structural instability in a simplified nonlinear model for suspension bridges, AIMETA 2017-Proceedings of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics, 4 (2017), 746-759. |
[9] | A. Falocchi, Torsional instability and sensitivity analysis in a suspension bridge model related to the Melan equation, Commun. Nonlinear Sci., 67 (2019), 60-75. |
[10] | A. Ferrero, F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Cont. Dyn-A, 35 (2015), 5879-5908. |
[11] | R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, 68, Springer, 1997. |
[12] | Y. Wang, Finite time blow-up and global solutions for fourth order damped wave equations, J. Math. Anal. Appl., 418 (2014), 713-733. |