Research article

A semilnear singular problem for the fractional laplacian

  • Received: 16 October 2018 Accepted: 22 October 2018 Published: 24 October 2018
  • MSC : Primary 35A15; Secondary 35S15, 47G20, 46E35

  • We study the problem $\left(-\Delta\right) ^{s}u = -au^{-\gamma}+\lambda h$ in $\Omega, $ $u = 0$ in $\mathbb{R}^{n}\setminus\Omega, $ $u>0$ in $\Omega, $ where $0 < s < 1, $ $\Omega$ is a bounded domain in $\mathbb{R}^{n}$ with $C^{1, 1}$ boundary, $a$ and $h$ are nonnegative bounded functions, $h\not \equiv 0, $ and $\lambda>0.$ We prove that if $\gamma\in\left(0, s\right) $ then, for $\lambda$ positive and large enough, there exists a weak solution such that $c_{1}d_{\Omega}^{s}\leq u\leq c_{2}d_{\Omega}^{s}$ in $\Omega$ for some positive constants $c_{1}$ and $c_{2}.$ A somewhat more general result is also given.

    Citation: Tomas Godoy. A semilnear singular problem for the fractional laplacian[J]. AIMS Mathematics, 2018, 3(4): 464-484. doi: 10.3934/Math.2018.4.464

    Related Papers:

  • We study the problem $\left(-\Delta\right) ^{s}u = -au^{-\gamma}+\lambda h$ in $\Omega, $ $u = 0$ in $\mathbb{R}^{n}\setminus\Omega, $ $u>0$ in $\Omega, $ where $0 < s < 1, $ $\Omega$ is a bounded domain in $\mathbb{R}^{n}$ with $C^{1, 1}$ boundary, $a$ and $h$ are nonnegative bounded functions, $h\not \equiv 0, $ and $\lambda>0.$ We prove that if $\gamma\in\left(0, s\right) $ then, for $\lambda$ positive and large enough, there exists a weak solution such that $c_{1}d_{\Omega}^{s}\leq u\leq c_{2}d_{\Omega}^{s}$ in $\Omega$ for some positive constants $c_{1}$ and $c_{2}.$ A somewhat more general result is also given.


    加载中
    [1] I. Bachar, H. Maagli and V. Rǎdulescu, Singular solutions of a nonlinear elliptic equation in a punctured domain, Electron. J. Qual. Theo., 94 (2017), 1-19.
    [2] B. Barrios, I. De Bonis, M. Medina, et al. Semilinear problems for the fractional laplacian with a singular nonlinearity, Open Math., 13 (2015), 390-407.
    [3] A. Callegari and A. Nachman, A nonlinear singular boundary-value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math., 38 (1980), 275-281.
    [4] Z. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann., 312 (1998), 465-501.
    [5] F. Cîrstea, M. Ghergu and V. Rǎdulescu, Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type, J. Math. Pure. Appl., 84 (2005), 493-508.
    [6] D. S. Cohen and H. B. Keller, Some positive problems suggested by nonlinear heat generators, J. Math. Mech., 16 (1967), 1361-1376.
    [7] M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Commun. Part. Diff. Eq., 2 (1977), 193-222.
    [8] M. A. del Pino, A global estimate for the gradient in a singular elliptic boundary value problem, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 122 (1992), 341-352.
    [9] J. I. Diaz, J. Hernandez and J. M. Rakotoson, On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms, Milan J. Math., 79 (2011), 233-245.
    [10] J. Díaz, M. Morel and L. Oswald, An elliptic equation with singular nonlinearity, Commun. Part. Diff. Eq., 12 (1987), 1333-1344.
    [11] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, B. Sci. Math., 136 (2012), 521-573.
    [12] A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional p-minimizers, ANN. I. H. POINCARE-AN, 33 (2016), 1279-1299.
    [13] L. Dupaigne, M. Ghergu and V. Rǎdulescu, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pure. Appl., 87 (2007), 563-581.
    [14] L. F. O. Faria, O. H. Miyagaki and D. Motreanu, Comparison and positive solutions for problems with the (p; q)-Laplacian and a convection term, Proceedings of the Edinburgh Mathematical Society (Series 2), 57 (2014), 687-698.
    [15] W. Fulks and J. S. Maybee, A singular nonlinear equation, Osaka J. Math., 12 (1960), 1-19.
    [16] A. Fiscella, R. Servadei and E. Valdinoci, Density properties for fractional Sobolev Spaces, Annales Academiae Scientiarum Fennicae. Mathematica, 40 (2015), 235-253.
    [17] L. Gasiński and N. S. Papageorgiou, Nonlinear Elliptic Equations with Singular Terms and Combined Nonlinearities, Ann. Henri Poincaré, 13 (2012), 481-512.
    [18] M. Ghergu, V. Liskevich and Z. Sobol, Singular solutions for second-order non-divergence type elliptic inequalities in punctured balls, J. Anal. Math., 123 (2014), 251-279.
    [19] T. Godoy and A. Guerin, Multiplicity of positive weak solutions to subcritical singular elliptic Dirichlet problems, Electron. J. Qual. Theo., 100 (2017), 1-30.
    [20] T. Godoy and A. Guerin, Multiple positive finite energy weak solutions to singular elliptic problems with a parameter, AIMS Mathematics, 3 (2018), 233-252.
    [21] A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary value problem, P. Am. Math. Soc., 111 (1991), 721-730.
    [22] H. Maagli, Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Nonlinear Anal-Theor, 74 (2011), 2941-2947.
    [23] H. Maagli, and M. Zribi, Existence and estimates of solutions for singular nonlinear elliptic problems, J. Math. Anal. Appl., 263 (2001), 522-542.
    [24] N. S. Papageorgiou and G. Smyrlis, Nonlinear elliptic equations with singular reaction, Osaka J. Math., 53 (2016), 489-514.
    [25] K. Ho, K. Perera, I. Sim, et al. A note on fractional p-Laplacian problems with singular weights, Journal of fixed point theory and its applications, 19 (2017), 157-173.
    [26] V. D. Rǎdulescu, Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities, In: M. Chipot, Editor, Handbook of Differential Equations: Stationary Partial Differential Equations, North-Holland Elsevier Science, Amsterdam, 4 (2007), 483-593.
    [27] X. Ros-Oton, Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat., 60 (2016), 3-26.
    [28] X. Ros-Oton and J. Serra, The Dirichlet problem fot the fractional laplacian: Regularity up to the boundary, J. Math. Pure. Appl., 101 (2014), 275-302.
    [29] R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.
    [30] Z. Zhang, The asymptotic behaviour of the unique solution for the singular Lane-Emden-Fowler equation, J. Math. Anal. Appl., 312 (2005), 33-43.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3991) PDF downloads(679) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog