Research article

A conserved phase-field model based on type II heat conduction

  • Received: 17 March 2018 Accepted: 17 May 2018 Published: 25 May 2018
  • Our aim in this paper is to study the well-posedness of Caginalp phase-field model based on the theory of type Ⅱ thermomechanics. More precisely, we prove the existence and uniqueness of solutions.

    Citation: Franck Davhys Reval Langa, Armel Judice Ntsokongo. A conserved phase-field model based on type II heat conduction[J]. AIMS Mathematics, 2018, 3(2): 288-297. doi: 10.3934/Math.2018.2.288

    Related Papers:

  • Our aim in this paper is to study the well-posedness of Caginalp phase-field model based on the theory of type Ⅱ thermomechanics. More precisely, we prove the existence and uniqueness of solutions.


    加载中
    [1] G. Caginalp, Conserved-phase field system: implications for kinetic undercooling, phys. Rev. B, 38 (1988), 789–791.
    [2] G. Caginalp, The dynamics of a conserved phase-field system: Stefan-Like, Hele-Shaw and Cahn- Hilliard models as asymptotic limits, IMA J. Appl. Math., 1 (1990), 77–94.
    [3] D. Brochet, D. Hilhorst and A. Novick-Cohen, Maximal attractor and inertial sets for a conserved phase field model, Adv. Differ. Equ-NY, 1 (1996), 547–578.
    [4] G. Gilardi, On a conserved phase field model with irregular potentials and dynamic boundary conditions, Istit. Lombardo Accad. Sci. Lett. Rend. A, 14 (2007), 129–161.
    [5] C. I. Christov and P. M. Jordan, Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Lett., 94 (2005), 154301.
    [6] M. Grasselli, A. Miranville, V. Pata, et al. Well-posedness and long time behavior of a parabolichyperbolic phase-field system with singular potentials, Math. Nachr., 280 (2007), 1475–1509.
    [7] L. Cherfils, A. Miranville and S. Peng, Higher-order models in phase separation, J. Appl. Anal. Comput., 7 (2017), 39–56.
    [8] L. Cherfils, A. Miranville and S. Peng, Higher-order generalized Cahn-Hilliard equations, Electron. J. Qual. Theo., 9 (2017), 1–22.
    [9] A. Miranville, Some mathematical models in phase transition, Discrete Cont. Dyn-S, 7 (2014), 271–306.
    [10] A. Miranville, On the conserved phase-field model, J. Math. Anal. Appl., 400 (2013), 143–152.
    [11] A. Miranville, On higher-order anisotropic conservative Caginalp phase-field systems, Appl. Math. Opt., 77 (2018), 1–18.
    [12] A. Miranville and R. Quintanilla, Some generalizations of the Caginalp phase-field system, Appl. Anal., 88 (2009), 877–894.
    [13] A. Miranville and R. Quintanilla, A conserved phase-field system based on the Maxwell-Cattaneo law, Nonlinear Anal-Real, 14 (2013), 1680–1692.
    [14] A. Miranville and R. Quintanilla, A Caginalp phase-field system based on type Ⅲ heat conduction with two temperatures, Quart. Appl. Math., 74 (2016), 375–398.
    [15] A. Miranville and R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal-Theor, 71 (2009), 2278–2290.
    [16] A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete cont. Dyn-A, 28 (2010), 275–310.
    [17] A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, In: Handbook of Differential Equations, Evolutionary Partial Differential Equations, C. M. Dafermos, M. Pokorny eds., Elsevier, Amsterdam, 4 (2008), 103–200.
    [18] A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), 545–582.
    [19] J. Jiang, Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo heat flux law, J. Math. Anal. Appl., 341 (2008), 149–169.
    [20] J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795–801.
    [21] A. E. Green, P. M. Naghdi, On Undamped heat waves in an elastic solid, J. Therm. Stresses, 15 (1992), 253–264.
    [22] A. J. Ntsokongo, D. Moukoko, F. D. R. Langa, et al. On higher-order anisotropic conservative Caginalp phase-field type models, AIMS Mathematics, 2 (2017), 215–229.
    [23] A. J. Ntsokongo and N. Batangouna, Existence and uniqueness of solutions for a conserved phasefield type model, AIMS Mathematics, 1 (2016), 144–155.
    [24] A. Morro, L. E. Payne and B. Straughan, Decay, growth, continuous dependence and uniqueness results in generalized heat conduction theories, Appl. Anal., 38 (1990), 231–243.
    [25] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Second edition, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3478) PDF downloads(759) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog