Citation: Joseph L. Shomberg. Well-posedness and global attractors for a non-isothermal viscous relaxationof nonlocal Cahn-Hilliard equations[J]. AIMS Mathematics, 2016, 1(2): 102-136. doi: 10.3934/Math.2016.2.102
[1] | Robert A. Adams and John J. F. Fournier, Sobolev spaces, second ed., Pure and Applied Mathematics - Volume 140, Academic Press / Elsevier Science, Oxford, 2003. |
[2] | Fuensanta Andreu-Vaillo, Jos´e M. Maz´on, Julio D. Rossi, and J. Juli´an Toledo-Melero, Nonlocal diffusion problems, Mathematical Surveys and Monographs, vol. 165, American Mathematical Society, Real Sociedad Matem´atica Espa˜nola, 2010. |
[3] | A. V. Babin and M. I. Vishik, Attractors of evolution equations, North-Holland, Amsterdam, 1992. |
[4] | Viorel Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff International Publishing, Bucharest, 1976. |
[5] | Pierluigi Colli, Sergio Frigeri, and Maurizio Grasselli, Global existence of weak solutions to a nonlocal Cahn–Hilliard–Navier–Stokes system, J. Math. Anal. Appl. 386 (2012), no. 1, 428–444. |
[6] | Pierluigi Colli, Pavel Krejˇc´ı, Elisabetta Rocca, and J¨urgen Sprekels, Nonlinear evolution inclusions arising from phase change models, Czechoslovak Math. J. 57 (2007), no. 132, 1067–1098. |
[7] | Sergio Frigeri and Maurizio Grasselli, Global and trajectory attractors for a nonlocal Cahn–Hilliard–Navier–Stokes system, J. Dynam. Differential Equations 24 (2012), no. 4, 827–856. |
[8] | Sergio Frigeri, Maurizio Grasselli, and Elisabetta Rocca, A diffuse interface model for two-phase incompressible flows with nonlocal interactions and nonconstant mobility, arXiv:1303.6446v2 (2015). |
[9] | Ciprian G. Gal and Maurizio Grasselli, The non-isothermal Allen–Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst. 22 (2008), no. 4, 1009–1040. |
[10] | Ciprian G. Gal, Maurizio Grasselli, and Alain Miranville, Robust exponential attractors for singularly perturbed phase-field equations with dynamic boundary conditions, NoDEA Nonlinear Differential Equations Appl. 15 (2008), no. 4–5, 535–556. |
[11] | Ciprian G. Gal and Murizio Grasselli, Longtime behavior of nonlocal Cahn–Hilliard equations, Discrete Contin. Dyn. Syst. 34 (2014), no. 1, 145–179. |
[12] | Ciprian G. Gal and Alain Miranville, Uniform global attractors for non-isothermal viscous and non-viscous Cahn–Hilliard equations with dynamic boundary conditions, Nonlinear Anal. Real World Appl. 10 (2009), no. 3, 1738–1766. |
[13] | Giambattista Giacomin and Joel L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. i. macroscopic limits, J. Statist. Phys. 87 (1997), no. 1–2, 37–61. |
[14] | Maurizio Grasselli, Finite-dimensional global attractor for a nonlocal phase-field system, Istituto Lombardo (Rend. Scienze) Mathematica 146 (2012), 113–132. |
[15] | Maurizio Grasselli, Hana Petzeltov´a, and Giulio Schimperna, Asymptotic behavior of a nonisothermal viscous cahn-hilliard equation with inertial term, J. Differential Equations 239 (2007), no. 1, 38–60. |
[16] | L. Herrera and D. Pav´on, Hyperbolic theories of dissipation: Why and when do we need them?, Phys. A 307 (2002), 121–130. |
[17] | D. D. Joseph and Luigi Preziosi, Heat waves, Rev. Modern Phys. 61 (1989), no. 1, 41–73. |
[18] | D. D. Joseph and Luigi Preziosi, Addendum to the paper: “heat waves”, Rev. Modern Phys. 62 (1990), no. 2, 375–391. |
[19] | Pavel Krejˇc´ı and J¨urgen Sprekels, Nonlocal phase-field models for non-isothermal phase transitions and hysteresis, Adv. Math. Sci. Appl. 14 (2004), no. 2, 593–612. |
[20] | Albert J. Milani and Norbert J. Koksch, An introduction to semiflows, Monographs and Surveys in Pure and Applied Mathematics - Volume 134, Chapman & Hall/CRC, Boca Raton, 2005. |
[21] | Alain Miranville and Sergey Zelik, Robust exponential attractors for singularly perturbed phasefield type equations, Electron. J. Differential Equations 2002 (2002), no. 63, 1–28. |
[22] | Francesco Della Porta and Maurizio Grasselli, Convective nonlocal cahn-hilliard equations with reaction terms, Discrete Contin. Dyn. Syst. Ser. B 20 (2015), no. 5, 1529–1553. |
[23] | Michael Renardy and Robert C. Rogers, An introduction to partial differential equations, second ed., Texts in Applied Mathematics - Volume 13, Springer-Verlag, New York, 2004. |
[24] | James C. Robinson, Inertial manifolds for the Kuramoto–Sivashinsky equation, Physics Letters (1994), no. 184, 190–193. |
[25] | Murizio Grasselli Giulio Schimperna, Nonlocal phase-field systems with general potentials, Discrete Contin. Dyn. Syst. 33 (2013), no. 11–12, 5089–5106. |
[26] | Hiroki Tanabe, Equations of evolution, Pitman, London, 1979. |
[27] | Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences - Volume 68, Springer-Verlag, New York, 1988. |
[28] | Roger Temam, Navier-Stokes equations - theory and numerical analysis, reprint ed., AMS Chelsea Publishing, Providence, 2001. |
[29] | Songmu Zheng, Nonlinear evolution equations, Monographs and Surveys in Pure and Applied Mathematics - Volume 133, Chapman & Hall/CRC, Boca Raton, 2004. |
[30] | Songmu Zheng and Albert Milani, Global attractors for singular perturbations of the Cahn– Hilliard equations, J. Differential Equations 209 (2005), no. 1, 101–139. |