Citation: Holly E Perry, Ivan Ryzhov, Oxana Galanina, Nicolai V Bovin, Stephen M Henry. Incidence in plasma of low level antibodies against three xenotransplantation and immunotherapeutic glycan antigens[J]. AIMS Allergy and Immunology, 2020, 4(4): 75-87. doi: 10.3934/Allergy.2020007
[1] | von Gunten S, Smith DF, Cummings RD, et al. (2009) Intravenous immunoglobulin contains a broad repertoire of anticarbohydrate antibodies that is not restricted to the IgG2 subclass. J Allergy Clin Immunol 123: 1268-1276. doi: 10.1016/j.jaci.2009.03.013 |
[2] | Baumgarth N, Tung JW, Herzenberg LA (2005) Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin Immunopathol 26: 347-362. doi: 10.1007/s00281-004-0182-2 |
[3] | Bovin NV (2013) Natural antibodies to glycans. Biochemistry Moscow 78: 786-797. doi: 10.1134/S0006297913070109 |
[4] | Huflejt ME, Vuskovic M, Vasiliu D, et al. (2009) Anti-carbohydrate antibodies of normal sera: findings, surprises and challenges. Mol Immunol 46: 3037-3049. doi: 10.1016/j.molimm.2009.06.010 |
[5] | Khasbiullina NR, Bovin NV (2015) Hypotheses of the origin of natural antibodies: a glycobiologist's opinion. Biochemistry Moscow 80: 820-835. doi: 10.1134/S0006297915070032 |
[6] | Springer GF, Horton RE (1969) Blood group isoantibody stimulation in man by feeding blood group-active bacteria. J Clin Invest 48: 1280-1291. doi: 10.1172/JCI106094 |
[7] | Commins SP, Platts-Mills TA (2010) Allergenicity of carbohydrates and their role in anaphylactic events. Curr Allergy Asthma Rep 10: 29-33. doi: 10.1007/s11882-009-0079-1 |
[8] | Dunne DW (1990) Schistosome carbohydrates. Parasitol Today 6: 45-48. doi: 10.1016/0169-4758(90)90068-F |
[9] | März L, Altmann F, Staudacher E, et al. (1995) Protein glycosylation in insects. New Comprehensive Biochemistry Amsterdam: Elsevier, 521. |
[10] | Klein HG, Anstee DJ (2014) Mollison's Blood Transfusion in Clinical Medicine Oxford: Wiley-Blackwell, 118. |
[11] | Galili U, Rachmilewitz EA, Peleg A, et al. (1984) A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med 160: 1519-1531. doi: 10.1084/jem.160.5.1519 |
[12] | Wigglesworth KM, Racki WJ, Mishra R, et al. (2011) Rapid recruitment and activation of macrophages by anti-Gal/α-Gal liposome interaction accelerates wound healing. J Immunol 186: 4422-4432. doi: 10.4049/jimmunol.1002324 |
[13] | Galili U, Wigglesworth K, Abdel-Motal UM (2010) Accelerated healing of skin burns by anti-Gal/α-gal liposomes interaction. Burns 36: 239-251. doi: 10.1016/j.burns.2009.04.002 |
[14] | Hossain MK, Vartak A, Karmakar P, et al. (2018) Augmenting vaccine immunogenicity through the use of natural human anti-rhamnose antibodies. ACS Chem Biol 13: 2130-2142. doi: 10.1021/acschembio.8b00312 |
[15] | Galili U (2018) The Natural Anti-Gal Antibody as Foe Turned Friend in Medicine London: Academic Press, 176. |
[16] | Blixt O, Head S, Mondala T, et al. (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. P Natl Acad Sci USA 101: 17033-17038. doi: 10.1073/pnas.0407902101 |
[17] | Vuskovic MI, Xu H, Bovin NV, et al. (2011) Processing and analysis of serum antibody binding signals from Printed Glycan Arrays for diagnostic and prognostic applications. Int J Bioinf Res Appl 7: 402-426. doi: 10.1504/IJBRA.2011.043771 |
[18] | Sheridan RTC, Hudon J, Hank JA, et al. (2014) Rhamnose glycoconjugates for the recruitment of endogenous anti-carbohydrate antibodies to tumor cells. Chembiochem 15: 1393-1398. doi: 10.1002/cbic.201402019 |
[19] | Shaw SM, Middleton J, Wigglesworth K, et al. (2019) AGI-134: a fully synthetic α-Gal glycolipid that converts tumors into in situ autologous vaccines, induces anti-tumor immunity and is synergistic with an anti-PD-1 antibody in mouse melanoma models. Cancer Cell Int 19: 346. doi: 10.1186/s12935-019-1059-8 |
[20] | Dotan N, Altstock RT, Schwarz M, et al. (2006) Anti-glycan antibodies as biomarkers for diagnosis and prognosis. Lupus 15: 442-450. doi: 10.1191/0961203306lu2331oa |
[21] | Bello-Gil D, Manez R (2015) Exploiting natural anti-carbohydrate antibodies for therapeutic purposes. Biochemistry Moscow 80: 836-845. doi: 10.1134/S0006297915070044 |
[22] | Griesemer A, Yamada K, Sykes M (2014) Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev 258: 241-258. doi: 10.1111/imr.12152 |
[23] | Oyelaran O, McShane LM, Dodd L, et al. (2009) Profiling human serum antibodies with a carbohydrate antigen microarray. J Proteome Res 8: 4301-4310. doi: 10.1021/pr900515y |
[24] | Galanina OE, Mecklenburg M, Nifantiev NE, et al. (2003) GlycoChip: multiarray for the study of carbohydrate-binding proteins. Lab Chip 3: 260-265. doi: 10.1039/b305963d |
[25] | Shilova N, Navakouski M, Khasbiullina N, et al. (2012) Printed glycan array: antibodies as probed in undiluted serum and effects of dilution. Glycoconjugate J 29: 87-91. doi: 10.1007/s10719-011-9368-8 |
[26] | Yu PB, Holzknecht ZE, Bruno D, et al. (1996) Modulation of natural IgM binding and complement activation by natural IgG antibodies: a role for IgG anti-Gal alpha1-3Gal antibodies. J Immunol 157: 5163-5168. |
[27] | Korchagina EY, Henry SM (2015) Synthetic glycolipid-like constructs as tools for glycobiology research, diagnostics, and as potential therapeutics. Biochemistry Moscow 80: 857-871. doi: 10.1134/S0006297915070068 |
[28] | Perry H, Bovin N, Henry S (2019) A standardized kodecyte method to quantify ABO antibodies in undiluted plasma of patients before ABO-incompatible kidney transplantation. Transfusion 59: 2131-2140. |
[29] | Henry SM, Bovin NV (2018) Kode Technology—a universal cell surface glycan modification technology. J R Soc N Z 49: 100-113. doi: 10.1080/03036758.2018.1546195 |
[30] | Henry S, Williams E, Barr K, et al. (2018) Rapid one-step biotinylation of biological and non-biological surfaces. Sci Rep 8: 2845. doi: 10.1038/s41598-018-21186-3 |
[31] | Downes KA, Shulman IA (2014) Pretransfusion testing. Technical Manual Bethesda: American Association of Blood Banks, 371. |
[32] | Romano EL, Mollison PL (1973) Mechanism of red cell agglutination by IgG antibodies. Vox Sang 25: 28-31. doi: 10.1159/000460518 |
[33] | Obukhova P, Tsygankova S, Chinarev A, et al. (2020) Are there specific antibodies against Neu5Gc epitopes in the blood of healthy individuals? Glycobiology 30: 395-406. doi: 10.1093/glycob/cwz107 |
[34] | Obukhova P, Korchagina E, Henry S, et al. (2012) Natural anti-A and anti-B of the ABO system: allo- and autoantibodies have different epitope specificity. Transfusion 52: 860-869. doi: 10.1111/j.1537-2995.2011.03381.x |
[35] | Barr K, Korchagina E, Ryzhov I, et al. (2014) Mapping the fine specificity of ABO monoclonal reagents with A and B type-specific FSL constructs in kodecytes and inkjet printed on paper. Transfusion 54: 2477-2484. doi: 10.1111/trf.12661 |
[36] | Williams E, Korchagina E, Frame T, et al. (2016) Glycomapping the fine specificity of monoclonal and polyclonal Lewis antibodies with type-specific Lewis kodecytes and function-spacer-lipid constructs printed on paper. Transfusion 56: 325-333. doi: 10.1111/trf.13384 |
[37] | Hult AK, Frame T, Chesla S, et al. (2012) Flow cytometry evaluation of red blood cells mimicking naturally occurring ABO subgroups after modification with variable amounts of function-spacer-lipid A and B constructs. Transfusion 52: 247-251. doi: 10.1111/j.1537-2995.2011.03268.x |
[38] | Henry S (2009) Modification of red blood cells for laboratory quality control use. Curr Opin Hematol 16: 467-472. doi: 10.1097/MOH.0b013e328331257e |
[39] | Sneath JS, Sneath PHA (1955) Transformation of the Lewis groups of human red cells. Nature 176: 172. doi: 10.1038/176172a0 |
[40] | Thorpe SJ, Fox B, Sharp G, et al. (2016) A WHO reference reagent to standardize haemagglutination testing for anti-A and anti-B in serum and plasma: international collaborative study to evaluate a candidate preparation. Vox Sang 111: 161-170. doi: 10.1111/vox.12399 |
[41] | Bentall A, Barnett NR, Braitch M, et al. (2016) Clinical outcomes with ABO antibody titer variability in a multicenter study of ABO-incompatible kidney transplantation in the United Kingdom. Transfusion 56: 2668-2679. doi: 10.1111/trf.13770 |
[42] | Kurtenkov O, Klaamas K, Rittenhouse-Olson K, et al. (2005) IgG immune response to tumor-associated carbohydrate antigens (TF, Tn, alphaGal) in patients with breast cancer: impact of neoadjuvant chemotherapy and relation to the survival. Exp Oncol 27: 136-140. |
[43] | Strobel E (2008) Hemolytic transfusion reactions. Transfus Med Hemother 35: 346-353. doi: 10.1159/000154811 |
[44] | McMorrow IM, Comrack CA, Nazarey PP, et al. (1997) Relationship between ABO blood group and levels of Gal α,3Galactose-reactive human immunoglobulin G. Transplantation 64: 546-549. doi: 10.1097/00007890-199708150-00032 |
[45] | Barreau N, Blancho G, Boulet C, et al. (2000) Natural anti-Gal antibodies constitute 0.2% of intravenous immunoglobulin and are equally retained on a synthetic disaccharide column or on an immobilized natural glycoprotein. Transplant Proc 32: 882-883. doi: 10.1016/S0041-1345(00)01023-X |
[46] | Obukhova P, Rieben R, Bovin N (2007) Normal human serum contains high levels of anti-Galα1-4GlcNAc antibodies. Xenotransplantation 14: 627-635. doi: 10.1111/j.1399-3089.2007.00436.x |
[47] | Galili U, Korkesh A, Kahane I, et al. (1983) Demonstration of a natural antigalactosyl IgG antibody on thalassemic red blood cells. Blood 61: 1258-1264. doi: 10.1182/blood.V61.6.1258.1258 |
[48] | GalilI U, Macher BA, Buehler J, et al. (1985) Human natural anti-α-galactosyl IgG. II. The specific recognition of α(1 → 3)-linked galactose residues. J Exp Med 162: 573-582. doi: 10.1084/jem.162.2.573 |
[49] | Mujahid A, Dickert FL (2015) Blood group typing: from classical strategies to the application of synthetic antibodies generated by molecular imprinting. Sensors 16: 51. doi: 10.3390/s16010051 |
[50] | Oliver C, Blake D, Henry S (2011) Modeling transfusion reactions and predicting in vivo cell survival with kodecytes. Transfusion 51: 1723-1730. doi: 10.1111/j.1537-2995.2010.03034.x |
[51] | Heathcote D, Carroll T, Wang J, et al. (2010) Novel antibody screening cells, MUT+Mur kodecytes, created by attaching peptides onto red blood cells. Transfusion 50: 635-641. doi: 10.1111/j.1537-2995.2009.02480.x |
[52] | Henry SM, Komarraju S, Heathcote D, et al. (2011) Designing peptide-based FSL constructs to create Miltenberger kodecytes. ISBT Sci Ser 6: 306-312. doi: 10.1111/j.1751-2824.2011.01505.x |