Citation: Zhenghui Li, Zhenzhen Wang, Zhehao Huang. Modeling Business Cycle with Financial Shocks Basing on Kaldor-Kalecki Model[J]. Quantitative Finance and Economics, 2017, 1(1): 44-66. doi: 10.3934/QFE.2017.1.44
[1] | Alpanda S, Aysun U (2014) International transmission of financial shocks in an estimated DSGE model. J Int Money Financ 47: 21-55. doi: 10.1016/j.jimonfin.2014.04.007 |
[2] | Arnold L (1998) Random Dynamical Systems. Springer. |
[3] | Bashkirtseva I, Ryashko L, Sysolyatina A (2016) Analysis of stochastic effects in Kaldor-type business cycle discrete model. Commun Nonlinear Sci Numer Simulat 36: 446-456. doi: 10.1016/j.cnsns.2015.12.020 |
[4] | ChangW, Smyth DJ (1972) The existence and persistence of cycles in a nonlinear model: Kaldor's 1940 model reexamined. Rev Econ Stud 38: 37-44. |
[5] | Christiano L, Motto R, Rostagno M (2007) Financial factors in business cycles. Northwestern University Working Paper. |
[6] | Claessens S, Kose MA, Terrones ME (2012) How do business and financial cycles interact? J Int Econ 87: 178-190. doi: 10.1016/j.jinteco.2011.11.008 |
[7] | Crauel H, Gundlach M (1999) Stochastic Dynamics. Springer. |
[8] | De Cesare L, Sportelli M (2012) Fiscal policy lags and income adjustment processes. Chaos, Solitons Fractals 45: 433-438. doi: 10.1016/j.chaos.2011.10.013 |
[9] | Grasman J,Wentzel JJ (1994) Co-Existence of a limit cycle and an equilibrium in Kaldor's business cycle model and it's consequences. J Econ Behav Organ 24: 369-377. doi: 10.1016/0167-2681(94)90043-4 |
[10] | Huang Z, Liu Z (2016) Random traveling wave and bifurcations of asymptotic behaviors in the stochastic KPP equation driven by dual noises. J Differ Equ 261: 1317-1356. doi: 10.1016/j.jde.2016.04.003 |
[11] | Iacoviello M (2015) Financial business cycles. Rev Econ Dyn 18: 140-163. doi: 10.1016/j.red.2014.09.003 |
[12] | Jerman U, Quadrini V (2012) Macroeconomic effects of financial shocks. Am Econ Rev 102: 238-271. |
[13] | Kaddar A, Talibi Alaoui H (2008) Hopf bifurcation analysis in a delayed Kaldor-Kalecki model of business cycle. Nonlinear Anal: Model Control 13: 439-449. |
[14] | Kaddar A, Talibi Alaoui H (2009) Local Hopf Bifurcation and Stability of Limit Cycle in a Delayed Kaldor-Kalecki Model. Nonlinear Anal: Model Control 14: 333-343. |
[15] | Kaldor N (1940) A model of the trade cycle. Econ J 50: 78-92. doi: 10.2307/2225740 |
[16] | Kalecki M (1935) A macrodynamic theory of business cycle. Econom 3: 327-344. doi: 10.2307/1905325 |
[17] | Kalecki M (1937) A theory of the business cycle. Rev Stud 4: 77-97. |
[18] | Kamber G, Thoenissen C (2013) Financial exposure and the international transmission of financial shocks. J Money, Credit Bank 45: 127-158 doi: 10.1111/jmcb.12073 |
[19] | Krawiec A, Szydłowski M (1999) The Kaldor-Kalecki business cycle model. Ann Oper Res 89: 89-100. doi: 10.1023/A:1018948328487 |
[20] | Kollmann R (2013) Global banks, financial shocks, and international business cycles: Evidence from an estimated model. J Money, Credit Bank 45: 159-195. doi: 10.1111/jmcb.12074 |
[21] | Kynes JM (1936) The General Theory of Employment, Interest Money. Macmillan Cambridge University Press. |
[22] | Luca D, Lombardo G (2009) Financial frictions, financial integration and the international propagation of shocks. Econ Policy 27: 321-359. |
[23] | Liao X, Li C, Zhou S (2005) Hopf bifurcation and chaos in macroeconomic models with policy lag. Chaos, Solitons Fractals 25: 91-108. doi: 10.1016/j.chaos.2004.09.075 |
[24] | Mimir Y (2016) Financial intermediaries, credit shocks and business cycles. Oxf Bul Econ Stat 78: 42-74. doi: 10.1111/obes.12099 |
[25] | Mircea G, Neamt¸u M, Opris¸ D (2011) The Kaldor-Kalecki stochastic model of business cycle. Nonlinear Anal: Model Control 16: 191-205. |
[26] | Øksendal B (2000) Stochastic Differential Equations: An Introduction with Applications. Springer. |
[27] | Øksendal B, Våge G, Zhao H (2001) Two properties of stochastic KPP equations: ergodicity and pathwise property. Nonlinearity 14: 639-662. doi: 10.1088/0951-7715/14/3/311 |
[28] | Szydłwski M, Krawiec A, Toboła J (2001) Nonlinear oscillations in business cycle model with time lags. Chaos, Solitons Fractals 12: 505-517. doi: 10.1016/S0960-0779(99)00207-6 |
[29] | Szydłwski M, Krawiec A (2001) The Kaldor-Kalecki Model of business cycle as a twodimensional dynamical system. J Nonlinear Math Phys 8: 266-271. doi: 10.2991/jnmp.2001.8.s.46 |
[30] | Szydłwski M, Krawiec A (2005) The stability problem in the Kaldor-Kalecki business cycle model. Chaos, Solitons Fractals 25: 299-305. doi: 10.1016/j.chaos.2004.11.012 |
[31] | Varian HR (1979) Catastrophe theory and the business cycle. Econ Inq 17: 14-28. doi: 10.1111/j.1465-7295.1979.tb00293.x |
[32] | Wang L,Wu X (2009) Bifurcation analysis of a Kaldor-Kalecki model of business cycle with time delay. Electron J Qual Theory Differ Eq 27: 1-20. |
[33] | Wu X (2012) Zero-Hopf bifurcation analysis of a Kaldor-Kalecki model of business cycle with delay. Nonlinear Anal: Real World Appl 13: 736-754. doi: 10.1016/j.nonrwa.2011.08.013 |
[34] | Zhang C, Wei J (2004) Stability and bifurcation analysis in a kind of business cycle model with delay. Chaos, Solitons Fractals 22: 883-896. doi: 10.1016/j.chaos.2004.03.013 |