Review Topical Sections

Role of actin cytoskeleton at multiple levels of T cell activation

  • Received: 10 August 2016 Accepted: 11 October 2016 Published: 18 October 2016
  • Actin cytoskeleton is an essential cellular structure that is involved in many physiological aspects, including T cell antigenic responses. In has been proposed that actin modulates biophysical parameters of the antigen recognition, forms a barrier inhibiting spontaneous signaling in resting T cells, facilitates TCR signal transduction, stabilizes contacts between T cells and antigen presenting cells, and contributes to the establishment of the antigen affinity threshold. In this review, we discuss the role of actin cytoskeleton at these particular levels of T cell activation.

    Citation: Martina Huranova, Ondrej Stepanek. Role of actin cytoskeleton at multiple levels of T cell activation[J]. AIMS Molecular Science, 2016, 3(4): 585-596. doi: 10.3934/molsci.2016.4.585

    Related Papers:

  • Actin cytoskeleton is an essential cellular structure that is involved in many physiological aspects, including T cell antigenic responses. In has been proposed that actin modulates biophysical parameters of the antigen recognition, forms a barrier inhibiting spontaneous signaling in resting T cells, facilitates TCR signal transduction, stabilizes contacts between T cells and antigen presenting cells, and contributes to the establishment of the antigen affinity threshold. In this review, we discuss the role of actin cytoskeleton at these particular levels of T cell activation.


    加载中
    [1] Ebert PJ, Ehrlich LI, Davis MM (2008) Low ligand requirement for deletion and lack of synapses in positive selection enforce the gauntlet of thymic T cell maturation. Immunity 29: 734-745. doi: 10.1016/j.immuni.2008.09.014
    [2] Peterson DA, DiPaolo RJ, Kanagawa O, et al. (1999) Cutting edge: negative selection of immature thymocytes by a few peptide-MHC complexes: differential sensitivity of immature and mature T cells. J Immunol 162: 3117-3120.
    [3] Brown AC, Oddos S, Dobbie IM, et al. (2011) Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy. PLoS Biol 9: e1001152. doi: 10.1371/journal.pbio.1001152
    [4] Leupin O, Zaru R, Laroche T, et al. (2000) Exclusion of CD45 from the T-cell receptor signaling area in antigen-stimulated T lymphocytes. Curr Biol 10: 277-280. doi: 10.1016/S0960-9822(00)00362-6
    [5] Lin J, Weiss A (2003) The tyrosine phosphatase CD148 is excluded from the immunologic synapse and down-regulates prolonged T cell signaling. J Cell Biol 162: 673-682. doi: 10.1083/jcb.200303040
    [6] Davis SJ, van der Merwe PA (2006) The kinetic-segregation model: TCR triggering and beyond. Nat Immunol 7: 803-809.
    [7] James JR, Vale RD (2012) Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487: 64-69.
    [8] Palmer E, Drobek A, Stepanek O (2016) Opposing effects of actin signaling and LFA-1 on establishing the affinity threshold for inducing effector T-cell responses in mice. Eur J Immunol 46: 1887-1901. doi: 10.1002/eji.201545909
    [9] Roybal KT, Buck TE, Ruan XT, et al. (2016) Computational spatiotemporal analysis identifies WAVE2 and cofilin as joint regulators of costimulation-mediated T cell actin dynamics. Sci Signal 9: rs3. doi: 10.1126/scisignal.aad4149
    [10] Su X, Ditlev JA, Hui E, et al. (2016) Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352: 595-599. doi: 10.1126/science.aad9964
    [11] Lee SH, Dominguez R (2010) Regulation of actin cytoskeleton dynamics in cells. Mol Cells 29: 311-325. doi: 10.1007/s10059-010-0053-8
    [12] Kumari S, Curado S, Mayya V, et al. (2014) T cell antigen receptor activation and actin cytoskeleton remodeling. Biochim Biophys Acta 1838: 546-556. doi: 10.1016/j.bbamem.2013.05.004
    [13] Campi G, Varma R, Dustin ML (2005) Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J Exp Med 202: 1031-1036. doi: 10.1084/jem.20051182
    [14] Shen A, Puente LG, Ostergaard HL (2005) Tyrosine kinase activity and remodelling of the actin cytoskeleton are co-temporally required for degranulation by cytotoxic T lymphocytes. Immunology 116: 276-286. doi: 10.1111/j.1365-2567.2005.02222.x
    [15] Babich A, Li S, O'Connor RS, et al. (2012) F-actin polymerization and retrograde flow drive sustained PLCgamma1 signaling during T cell activation. J Cell Biol 197: 775-787. doi: 10.1083/jcb.201201018
    [16] Yu Y, Smoligovets AA, Groves JT (2013) Modulation of T cell signaling by the actin cytoskeleton. J Cell Sci 126: 1049-1058. doi: 10.1242/jcs.098210
    [17] Comrie WA, Burkhardt JK (2016) Action and Traction: Cytoskeletal Control of Receptor Triggering at the Immunological Synapse. Front Immunol 7: 68.
    [18] Daniels MA, Teixeiro E, Gill J, et al. (2006) Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444: 724-729. doi: 10.1038/nature05269
    [19] King CG, Koehli S, Hausmann B, et al. (2012) T cell affinity regulates asymmetric division, effector cell differentiation, and tissue pathology. Immunity 37: 709-720. doi: 10.1016/j.immuni.2012.06.021
    [20] Stepanek O, Prabhakar AS, Osswald C, et al. (2014) Coreceptor scanning by the T cell receptor provides a mechanism for T cell tolerance. Cell 159: 333-345. doi: 10.1016/j.cell.2014.08.042
    [21] Liu B, Chen W, Evavold BD, et al. (2014) Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157: 357-368. doi: 10.1016/j.cell.2014.02.053
    [22] Thomas WE, Vogel V, Sokurenko E (2008) Biophysics of catch bonds. Annu Rev Biophys 37: 399-416. doi: 10.1146/annurev.biophys.37.032807.125804
    [23] McKeithan TW (1995) Kinetic proofreading in T-cell receptor signal transduction. Proc Natl Acad Sci U S A 92: 5042-5046. doi: 10.1073/pnas.92.11.5042
    [24] Yi J, Wu XS, Crites T, et al. (2012) Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells. Mol Biol Cell 23: 834-852. doi: 10.1091/mbc.E11-08-0731
    [25] Kochl R, Thelen F, Vanes L, et al. (2016) WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol: 1075-1083.
    [26] Huppa JB, Axmann M, Mortelmaier MA, et al. (2010) TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463: 963-967. doi: 10.1038/nature08746
    [27] O'Donoghue GP, Pielak RM, Smoligovets AA, et al. (2013) Direct single molecule measurement of TCR triggering by agonist pMHC in living primary T cells. Elife 2: e00778.
    [28] Ma Z, Sharp KA, Janmey PA, et al. (2008) Surface-anchored monomeric agonist pMHCs alone trigger TCR with high sensitivity. PLoS Biol 6: e43. doi: 10.1371/journal.pbio.0060043
    [29] Chan AC, Irving BA, Fraser JD, et al. (1991) The zeta chain is associated with a tyrosine kinase and upon T-cell antigen receptor stimulation associates with ZAP-70, a 70-kDa tyrosine phosphoprotein. Proc Natl Acad Sci U S A 88: 9166-9170. doi: 10.1073/pnas.88.20.9166
    [30] Weiss A, Littman DR (1994) Signal transduction by lymphocyte antigen receptors. Cell 76: 263-274. doi: 10.1016/0092-8674(94)90334-4
    [31] Zhang W, Sloan-Lancaster J, Kitchen J, et al. (1998) LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92: 83-92. doi: 10.1016/S0092-8674(00)80901-0
    [32] Bubeck Wardenburg J, Fu C, Jackman JK, et al. (1996) Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function. J Biol Chem 271: 19641-19644. doi: 10.1074/jbc.271.33.19641
    [33] Finco TS, Kadlecek T, Zhang W, et al. (1998) LAT is required for TCR-mediated activation of PLCgamma1 and the Ras pathway. Immunity 9: 617-626. doi: 10.1016/S1074-7613(00)80659-7
    [34] Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev Immunol 27: 591-619. doi: 10.1146/annurev.immunol.021908.132706
    [35] Lillemeier BF, Mortelmaier MA, Forstner MB, et al. (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11: 90-96.
    [36] Lillemeier BF, Pfeiffer JR, Surviladze Z, et al. (2006) Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci U S A 103: 18992-18997. doi: 10.1073/pnas.0609009103
    [37] Treanor B, Depoil D, Gonzalez-Granja A, et al. (2010) The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity 32: 187-199. doi: 10.1016/j.immuni.2009.12.005
    [38] Treanor B, Depoil D, Bruckbauer A, et al. (2011) Dynamic cortical actin remodeling by ERM proteins controls BCR microcluster organization and integrity. J Exp Med 208: 1055-1068. doi: 10.1084/jem.20101125
    [39] Mattila PK, Feest C, Depoil D, et al. (2013) The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity 38: 461-474. doi: 10.1016/j.immuni.2012.11.019
    [40] Tan YX, Manz BN, Freedman TS, et al. (2014) Inhibition of the kinase Csk in thymocytes reveals a requirement for actin remodeling in the initiation of full TCR signaling. Nat Immunol 15: 186-194.
    [41] Salazar-Fontana LI, Barr V, Samelson LE, et al. (2003) CD28 engagement promotes actin polymerization through the activation of the small Rho GTPase Cdc42 in human T cells. J Immunol 171: 2225-2232. doi: 10.4049/jimmunol.171.5.2225
    [42] Saveliev A, Vanes L, Ksionda O, et al. (2009) Function of the nucleotide exchange activity of vav1 in T cell development and activation. Sci Signal 2: ra83.
    [43] Sylvain NR, Nguyen K, Bunnell SC (2011) Vav1-mediated scaffolding interactions stabilize SLP-76 microclusters and contribute to antigen-dependent T cell responses. Sci Signal 4: ra14.
    [44] Cernuda-Morollon E, Millan J, Shipman M, et al. (2010) Rac activation by the T-cell receptor inhibits T cell migration. PLoS One 5: e12393. doi: 10.1371/journal.pone.0012393
    [45] Nolz JC, Gomez TS, Zhu P, et al. (2006) The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr Biol 16: 24-34. doi: 10.1016/j.cub.2005.11.036
    [46] Smith BA, Padrick SB, Doolittle LK, et al. (2013) Three-color single molecule imaging shows WASP detachment from Arp2/3 complex triggers actin filament branch formation. Elife 2: e01008.
    [47] Ryser JE, Rungger-Brandle E, Chaponnier C, et al. (1982) The area of attachment of cytotoxic T lymphocytes to their target cells shows high motility and polarization of actin, but not myosin. J Immunol 128: 1159-1162.
    [48] Lowin-Kropf B, Shapiro VS, Weiss A (1998) Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism. J Cell Biol 140: 861-871. doi: 10.1083/jcb.140.4.861
    [49] Faure S, Salazar-Fontana LI, Semichon M, et al. (2004) ERM proteins regulate cytoskeleton relaxation promoting T cell-APC conjugation. Nat Immunol 5: 272-279. doi: 10.1038/ni1039
    [50] Arpin M, Chirivino D, Naba A, et al. (2011) Emerging role for ERM proteins in cell adhesion and migration. Cell Adh Migr 5: 199-206. doi: 10.4161/cam.5.2.15081
    [51] Varma R, Campi G, Yokosuka T, et al. (2006) T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25: 117-127. doi: 10.1016/j.immuni.2006.04.010
    [52] Kaizuka Y, Douglass AD, Varma R, et al. (2007) Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc Natl Acad Sci U S A 104: 20296-20301. doi: 10.1073/pnas.0710258105
    [53] Yu Y, Fay NC, Smoligovets AA, et al. (2012) Myosin IIA modulates T cell receptor transport and CasL phosphorylation during early immunological synapse formation. PLoS One 7: e30704. doi: 10.1371/journal.pone.0030704
    [54] Ilani T, Vasiliver-Shamis G, Vardhana S, et al. (2009) T cell antigen receptor signaling and immunological synapse stability require myosin IIA. Nat Immunol 10: 531-539. doi: 10.1038/ni.1723
    [55] Ohashi Y, Tachibana K, Kamiguchi K, et al. (1998) T cell receptor-mediated tyrosine phosphorylation of Cas-L, a 105-kDa Crk-associated substrate-related protein, and its association of Crk and C3G. J Biol Chem 273: 6446-6451. doi: 10.1074/jbc.273.11.6446
    [56] Sawada Y, Tamada M, Dubin-Thaler BJ, et al. (2006) Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127: 1015-1026. doi: 10.1016/j.cell.2006.09.044
    [57] Dushek O, Mueller S, Soubies S, et al. (2008) Effects of intracellular calcium and actin cytoskeleton on TCR mobility measured by fluorescence recovery. PLoS One 3: e3913. doi: 10.1371/journal.pone.0003913
    [58] Sherman E, Barr V, Manley S, et al. (2011) Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 35: 705-720. doi: 10.1016/j.immuni.2011.10.004
    [59] Hu KH, Butte MJ (2016) T cell activation requires force generation. J Cell Biol 213: 535-542. doi: 10.1083/jcb.201511053
    [60] Gomez TS, McCarney SD, Carrizosa E, et al. (2006) HS1 functions as an essential actin-regulatory adaptor protein at the immune synapse. Immunity 24: 741-752. doi: 10.1016/j.immuni.2006.03.022
    [61] Kumari S, Depoil D, Martinelli R, et al. (2015) Actin foci facilitate activation of the phospholipase C-gamma in primary T lymphocytes via the WASP pathway. Elife 4: e04953.
    [62] Sims TN, Soos TJ, Xenias HS, et al. (2007) Opposing effects of PKCtheta and WASp on symmetry breaking and relocation of the immunological synapse. Cell 129: 773-785. doi: 10.1016/j.cell.2007.03.037
    [63] Wabnitz GH, Lohneis P, Kirchgessner H, et al. (2010) Sustained LFA-1 cluster formation in the immune synapse requires the combined activities of L-plastin and calmodulin. Eur J Immunol 40: 2437-2449. doi: 10.1002/eji.201040345
    [64] Na BR, Kim HR, Piragyte I, et al. (2015) TAGLN2 regulates T cell activation by stabilizing the actin cytoskeleton at the immunological synapse. J Cell Biol 209: 143-162. doi: 10.1083/jcb.201407130
    [65] Sims TN, Dustin ML (2002) The immunological synapse: integrins take the stage. Immunol Rev 186: 100-117. doi: 10.1034/j.1600-065X.2002.18610.x
    [66] Scholer A, Hugues S, Boissonnas A, et al. (2008) Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity 28: 258-270. doi: 10.1016/j.immuni.2007.12.016
    [67] Hosseini BH, Louban I, Djandji D, et al. (2009) Immune synapse formation determines interaction forces between T cells and antigen-presenting cells measured by atomic force microscopy. Proc Natl Acad Sci U S A 106: 17852-17857. doi: 10.1073/pnas.0905384106
    [68] Simonson WT, Franco SJ, Huttenlocher A (2006) Talin1 regulates TCR-mediated LFA-1 function. J Immunol 177: 7707-7714. doi: 10.4049/jimmunol.177.11.7707
    [69] Luo BH, Carman CV, Takagi J, et al. (2005) Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering. Proc Natl Acad Sci U S A 102: 3679-3684. doi: 10.1073/pnas.0409440102
    [70] Riteau B, Barber DF, Long EO (2003) Vav1 phosphorylation is induced by beta2 integrin engagement on natural killer cells upstream of actin cytoskeleton and lipid raft reorganization. J Exp Med 198: 469-474. doi: 10.1084/jem.20021995
    [71] Michel F, Attal-Bonnefoy G, Mangino G, et al. (2001) CD28 as a molecular amplifier extending TCR ligation and signaling capabilities. Immunity 15: 935-945. doi: 10.1016/S1074-7613(01)00244-8
    [72] Liang Y, Cucchetti M, Roncagalli R, et al. (2013) The lymphoid lineage-specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Nat Immunol 14: 858-866. doi: 10.1038/ni.2634
    [73] Tian R, Wang H, Gish GD, et al. (2015) Combinatorial proteomic analysis of intercellular signaling applied to the CD28 T-cell costimulatory receptor. Proc Natl Acad Sci U S A 112: E1594-1603. doi: 10.1073/pnas.1503286112
    [74] Tavano R, Contento RL, Baranda SJ, et al. (2006) CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat Cell Biol 8: 1270-1276. doi: 10.1038/ncb1492
    [75] Hayashi K, Altman A (2006) Filamin A is required for T cell activation mediated by protein kinase C-theta. J Immunol 177: 1721-1728. doi: 10.4049/jimmunol.177.3.1721
    [76] Yokosuka T, Kobayashi W, Sakata-Sogawa K, et al. (2008) Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 29: 589-601. doi: 10.1016/j.immuni.2008.08.011
    [77] Garcon F, Patton DT, Emery JL, et al. (2008) CD28 provides T-cell costimulation and enhances PI3K activity at the immune synapse independently of its capacity to interact with the p85/p110 heterodimer. Blood 111: 1464-1471.
    [78] Han J, Luby-Phelps K, Das B, et al. (1998) Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279: 558-560. doi: 10.1126/science.279.5350.558
    [79] Muscolini M, Camperio C, Porciello N, et al. (2015) Phosphatidylinositol 4-phosphate 5-kinase alpha and Vav1 mutual cooperation in CD28-mediated actin remodeling and signaling functions. J Immunol 194: 1323-1333. doi: 10.4049/jimmunol.1401643
    [80] Kallikourdis M, Trovato AE, Roselli G, et al. (2016) Phosphatidylinositol 4-Phosphate 5-Kinase beta Controls Recruitment of Lipid Rafts into the Immunological Synapse. J Immunol 196: 1955-1963. doi: 10.4049/jimmunol.1501788
    [81] van Stipdonk MJB, Hardenberg G, Bijker MS, et al. (2003) Dynamic programming of CD8(+) T lymphocyte responses. Nat Immunol 4: 361-365.
    [82] Moreau HD, Lemaitre F, Terriac E, et al. (2012) Dynamic in situ cytometry uncovers T cell receptor signaling during immunological synapses and kinapses in vivo. Immunity 37: 351-363. doi: 10.1016/j.immuni.2012.05.014
    [83] Moreau HD, Lemaitre F, Garrod KR, et al. (2015) Signal strength regulates antigen-mediated T-cell deceleration by distinct mechanisms to promote local exploration or arrest. Proc Natl Acad Sci U S A 112: 12151-12156. doi: 10.1073/pnas.1506654112
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5729) PDF downloads(1129) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog