Citation: Finn Zahari, Mirko Hansen, Thomas Mussenbrock, Martin Ziegler, Hermann Kohlstedt. Pattern recognition with TiOx-based memristive devices[J]. AIMS Materials Science, 2015, 2(3): 203-216. doi: 10.3934/matersci.2015.3.203
[1] | Querlioz D, Bichler O, Gamrat C (2011) Simulation of a Memristor-Based Spiking Neural Network Immune to Device Variations. Int Jt Conf Neural Netw (IJCNN) 1775-1781. |
[2] | Querlioz D, Bichler O, Dollfus P (2013) Immunity to Device Variations in a Spiking Neural Network with Memristive Nanodevices, IEEE Transactions on Nanotechnology 12: 288-295 |
[3] | Sheridan P, Ma W, Lu W (2014) Pattern Recognition with Memristor Networks, Circuits and Systems (ISCAS) 1078-1081. |
[4] | Shanahan T (2004) The Evolution of Darwinism, Selection Adaption and progress in Evolutionary Biology, Cambridge. |
[5] | Liu SC, Kramer J, Indiveri G, et al. (2002) Analog VLSI: Circuits and Principles, MIT Press Massachusetts. |
[6] | Chicca E, Stefanini F, Bartolozzi C, et al. (2014) Neuromorphic Elecroncis Circuits for Building Autonomous Cognitive Systems. Proc IEEE 102: 1397-1388. doi: 10.1109/JPROC.2014.2356752 |
[7] | Würtz RP (2008) Organic Computing, Understanding Complex Systems. Springer Berlin-Heidelberg. |
[8] | Amit D J (1989) Modeling Brain Function, The world of attractor neural networks. Cambridge University Press. |
[9] | Strukov DB, Snider GS, Stewart DR, et al. (2008), The missing memristor found. Nature 453: 80-83. |
[10] | Chua OL (1971) Memristor-The Missing Circuit Element. IEEE Trans. On Cir Theo 18: 507-519. doi: 10.1109/TCT.1971.1083337 |
[11] | Itoh K, Horiguchi M, Tanaka H (2006) Ultra-low Voltage Nano-Scale memories. Springer Science and Business |
[12] | Nawathe UG (2010) Design of High Performance Low Power Microprocessors, In Iniewski K, CMOS Processors and Memories, Springer Science and Business, 3-27 |
[13] | Tetzlaff R (2014) Memristors and memristive Systems. Springer New York. |
[14] | Ziegler M, Soni R, Patelczyk T, et al. (2012) An electronic version of Pavlov's dog. Adv Func Mat 22: 2744-2749. doi: 10.1002/adfm.201200244 |
[15] | Ziegler M, Ochs K, Hansen M, et al., (2014) An electronic implementation of amoeba anticipation: Appl Phys A 114: 565-570. |
[16] | Pershin YV, La Fontaine S, Di Ventra M (2009) Memristive model of amoeba learning. Phys Rev E 80: 021926. |
[17] | Bichler O, Zhao W, Alibart F, et al. (2013) Pavlov's Dog Associative Learning Demonstrated on Synaptic-Like Organic Transistors. Neural Comput 25: 549. doi: 10.1162/NECO_a_00377 |
[18] | Yu S, Gao B, Fang Z, et al. (2013) Stochastic learning in oxide binary synaptic device for neuromorphic computing. Front Neurosci 7: 186. |
[19] | Yu S, Gao B, Fang Z, et al. (2013) A Low Energy Oxide-Based Electronic Synaptic Device for Neuromorphic Visual Systems with Tolerance to Device Variation. Adv Mater 25: 1774-1779. doi: 10.1002/adma.201203680 |
[20] | Stewart TC, Choo FX, Eliasmith C (2012) Spaun: A perception-cognition-action model using spiking neurons. Proc 34th Ann Conf Cognitive Sci Soci. |
[21] | Waser R, Dittmann R, Staikov G, et al. (2009) Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges. Adv Mater 21: 2632-2663. doi: 10.1002/adma.200900375 |
[22] | Szot K, Speier W, Bihlmayer G, et al. (2006) Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater 5: 312-320. doi: 10.1038/nmat1614 |
[23] | Kozma R, Robinso EP, Pazienza GE (2012) Advances in Neuromorphic Memristor Science and Applications. Springer Dordrecht, Heidelberg London New York. |
[24] | Adamatzky A, Chua L (2014) Memristor Networks, Springer Heidelberg, NewYork Dordrecht London. |
[25] | Biolek Z, Biolek D, Biolkova V (2009) SPICE model of memristor with nonlinear dopant drift. Radioengineering 18: 210-214. |
[26] | Jeong HY, Lee JY, Choi SY, et al. (2009) Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films. Appl Phys Lett 95:162108 |
[27] | Choi BJ, Jeong DS, Kim SK, et al. (2005) Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J Appl Phys 98: 033715. doi: 10.1063/1.2001146 |
[28] | Yang JJ, Pickett MD, Li X, et al. (2008) Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol 3: 429-433. doi: 10.1038/nnano.2008.160 |
[29] | Zamarreño-Ramos C, Camuñas-Mesa LA, Pérez-Carrasco JA, et al. (2011) On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front Neurosci 5: 1-22. |
[30] | Ziegler M, Riggert C, Hansen M, et al. (2015) Memristive Hebbian Plasticity Model: Device Requirements for the Emulation of Hebbian Plasticity Based on Memristive Devices. IEEE Trans Biomed Circuits Syst 9: 197-206. doi: 10.1109/TBCAS.2015.2410811 |
[31] | Caporale N, Dan Y (2008) Spike Timing-Dependent Plasticity: A Hebbian Learning Rule. Ann Rev Neurosci 31: 25-46. doi: 10.1146/annurev.neuro.31.060407.125639 |
[32] | Byrne JH, Heidelberger R, Waxham MN (Eds.) (2014) From molecules to networks: an introduction to cellular and molecular neuroscience. Academic Press. |
[33] | Gerstner W, Kistler WM (2002) Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press. |
[34] | LeCun Y, Bottou L, Bengio Y, et al. (1998) Gradient-based learning applied to document recognition. Proc IEEE 86: 2278-2324. doi: 10.1109/5.726791 |