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Abstract: We report on the development of TiOx-based memristive devices for bio-inspired 

neuromorphic systems. In particular, capacitor like structures of Al/AlOx/TiOx/Al with, respectively 

20 nm and 50 nm thick TiOx-layers were fabricated and analyzed in terms of their use in neural 

network circuits. Therefore, an equivalent circuit model is presented which mimics the observed 

device properties on a qualitative level and relies on mobile oxygen ions by taking electronic 

transport through local conducting filaments and hopping between TiOx defect states into account. 

The model also comprises back diffusion of oxygen ions and allows for a realistic description of the 

experimental recorded device characteristics. The in Refs. [1–3] reported computing paradigms for 

pattern recognition have been used as guidelines for a device performance investigation at the 

network level. In particular, simulations of a spiking neural network are presented which allows for 

pattern recognition. As input patterns hand written digits taken from the MNIST Data base have been 

used. Within the network the memristive devices are arranged in a cross-bar array connected by 196 

input neurons and ten output neurons. While, each input neuron corresponds to a specific pixel of the 

image of the input pattern, the output neurons were implemented as spiking neurons. In addition, the 

output neurons were inhibitory linked within an winner-take-it-all network and consist of a 

homeostasis-like behavior for their spiking thresholds. Based on the network simulation essential 

requirements for the development of optimal memristive device for neuromorphic circuits are 

discussed.  

Keywords: memristive devices; neuromorphic; synaptic plasticity; spiking neural networks; 

unsupervised learning 
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1. Introduction 

Regardless the tremendous success of digital computers over the last decades shortcomings are 

obvious when it comes to pattern recognition, unsupervised learning or cognitive tasks. Indeed 

machine learning has been a challenging task since the early beginning of serial, binary computation 

based on the von Neumann architecture. To some extend today’s super computers are able to mimic 

biological systems but on the cost of huge power dissipation and device overhead.  Brains of 

humans, mammals and even simple forms of living species as invertebrates on contrary, are well 

adapted to permanently changing environments. The remarkable interaction performance between 

biological nerve system and their surroundings is a result of million years evolution explained by 

Darwinism [4]. It is not a surprise that scientists and engineers develop bio-inspired computing 

systems with the goal to realize so-called neuromorphic systems exhibiting benchmarks in pattern 

recognition, cognition and power efficiency as close as possible to their biological paradigms [5,6]. 

For these purposes roughly two pathways, software dominated Neuroinformatics [7,8] and analogue 

VLSI (Very Large Scale Integration) based on Si CMOS (Complementary Metal Oxide 

Semiconductor) technology [5,6] can be identified as major approaches. The latter gained new 

momentum with the advent of memristive devices.  

In the simplest form a two terminal memristive device consists of a capacitor-like 

metal-insulator-metal layer sequence. In contrast to linear resistors, memristive devices are able to 

remember the history of applied electric potentials and therefore feature a device characteristic that 

cannot be emulated by one of the other basic two-terminal circuit elements (resistance, inductance, 

and capacitance). In this respect, recent investigations have recognized the analogue to the  

memristor [9], which has been theoretically predicted by Chua in 1971 [10]. In the memristor model 

the resistance (or memristance) M(x, V, t) of the device can be expressed by a state variable x(t), 

which itself depends on the applied voltage V(t) as  

 
(1)  

where f is related in the most state-of-the-art memristive devices to ionic drift within the insulator. 

Actually memristive devices are considered as building blocks for future resistive random-access 

memories (RRAMs) which might show superior properties in comparison to charge based Flash 

technology [11]. The system architecture and functionality of RRAMs will be very close to that used 

in common digital memories. Short non-volatile data storage, switching times in the ns range, long 

data retention times (10 years), a small device variability as well as good fatigue performance are a 

few essential design parameters for RRAM cells. The development of RRAMs may lead to a unified 

memory which is able to overcome the current bottleneck, i.e. the data transfer rate in digital 

computers known as memory-processor latency [12].  

In contrast, the possible benefits of memristive devices for bio-inspired neuromorphic circuits 

are not that obvious and hence have to be explored. The coactions of biological information 

processing from the molecular length scale up to the system level in the inch range are by far not 

understood. Although one can notify a tremendous progress in the understanding of biological 

nervous systems there is still a considerable lack to explore the whole principles of information 

pathways from the molecular length scale to the system level. In other words the “brain code” is not 

yet understood. Therefore, it is up to now practically impossible to develop neuromorphic systems 
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which mimic the computing architecture of the entire brain. Instead trying to solve all problems at 

once, it is much more realistic and pragmatic to mimic specific feature of biological nerve systems 

by focusing on simpler and more visible goals. Indeed this strategy has been applied very 

successfully [13–19]. For example, the development of pattern recognition systems is an interesting 

approach which has many real world applications, such as autonomous robots and transportation, 

classifiers, front and speech recognition, and more general unsupervised learning strategies [20].  

Here, we report on the development of TiO2-x-based memristive devices for bio-inspired 

neuromorphic systems and their performance in a bio-inspired network for pattern recognition by 

taking the characteristics from real devices in network level simulations. Therefore, devices 

consisting of 20 nm and 50 nm thick TiO2-x layers are fabricated, which are sandwiched in capacitor 

like structure between a metallic Al- (bottom and top) electrodes, an AlOx tunneling barrier. While 

for 50 nm thick TiO2-x devices, binary resistive switching was recorded, a reduction of the oxide 

thickness to 20 nm leads to a much more homogeneous resistance switching characteristics. A 

physical-based equivalent circuit model is employed to analyze the obtained switching 

characteristics in some more detail and to provide a realistic device model for network level 

simulations. Previously reported neural network-based computing paradigms have been used as 

guidelines for network simulations. [1–3] Here, a compact version of those networks is presented, 

which consists of ten output neurons, which are inhibitory linked within a winner-take-it-all 

architecture and a homeostasis-like rule for the spiking- neurons thresholds. On the basis of this 

pattern recognition system essential requirements for the development of optimal memristive device 

for neuromorphic circuits are discussed.    

2. Materials and Method 

2.1. Device Fabrication 

The memristive devices were fabricated in a planar capacitor structure with the layer sequence 

Al/Al2O3/TiO2-x/Al as sketched in Figure 1(a). In particular, a 40 nm thick Nb layer was sputtered as 

the bottom electrode. Hereafter, 50 µm × 50 µm windows are defined using standard optical 

lithography. Afterwards, an 8 nm thick Al layer was sputtered, which was partially oxidized at 100 

mbar in pure oxygen for 30 min. On top of the Al2O3 layer, respectively, 50 nm or 20 nm of TiO2-x 

are reactively sputtered in an Ar/O2 atmosphere, followed by a 32 nm Al-layer as the top electrode 

and a subsequent lift-off in acetone. 

2.2. Electric Measurements 

All measurements were performed using an Agilent E5260 source measurement unit. 

Current-voltage measurements (I-V curves) were obtained by sweeping the applied voltage and 

measuring the current simultaneously. For synaptic potentiation measurements, rectangular voltage 

pulses with different amplitudes, polarity, and pulse durations were applied to the devices. Positive 

voltage means positive voltage on the top layer and ground on the bottom layer. 
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Figure 1. (a) Schematic cross-section view of device layer sequence including the 

equivalent circuit model. Typical I-V curves of devices comprising 20 nm thick 

TiO2-x (b) and 50 nm TiO2-x (c). Please note the analog and digital character of the 

switching process of the upper and lower I-V curve, respectively. Black lines 

corresponding to I-V measurements, while orange lines are simulation results.  

3. Results and Discussion 

3.1. Current-Voltage Characteristics and Device Model 

Two Al/Al2O3/TiO2-x/Al memristive devices with, respectively, 20 nm and 50 nm thick TiO2-x 

layers are compared in Figure 2 (b) and (c). In particular, each sub-figure contains the I-V curve 

(black curve) and the simulated current-voltage characteristic (orange curve). In the following, 

characteristic features of both devices are described.  

In Figure 2(b) a typical I-V curve obtained on devices with a TiO2-x layer thickness of 20 nm is 

shown. By sweeping the bias voltage between 2 V and −2 V the device resistance changes at positive 

voltages gradually and smoothly from the inertial high resistant state of 1 MΩ (HRS) to the low 

resistant state of 100 kΩ (LRS) and at negative voltages back to the inertial HRS. In order to avoid a 

device breakdown a current compliance of 50 µA was set. Devices with an increased layer thickness 

of 50 nm show binary resistance switching, as depicted in Figure 2(c). Therefore, at positive voltages 

the device resistance is changed from the HRS to the LRS at a set voltage of Vset = 0.3 V and vice 

versa by applying negative bias voltages lower than Vreset = −0.3 V. Thereby, the device resistance 

was decreased from 3 MΩ to 1 kΩ at Vset. Again a current compliance of ICC = 500 µA was used to 

avoid an irreversible breakdown of the device. Additionally, an electro-forming step was necessary 

for devices with TiO2-x layer thicknesses of 50 nm.  
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Table 1. Simulation parameters for the memristive device model. 

 dTiOx = 20 nm dTiOx = 50 nm 

α
+
 (α

-
) 2.1 V

−1
 (2.6 V

−1
) 2.1 V

−1
 (2.6 V

−1
) 

β 1.79 V
−1

 25.79 V
−1

 

AT 1 10
−8

 A 1.5 10
−5

 A 

AF 5 10
−8

 A 5 10
−8

 A 

κdiff 4.82 10
5
 A

−1
s

−1
 1.32 10

5
 A

−1
s

−1
 

κback 1 10
−3

 s
−1

 1 10
−5

 s
−1

 

In order to study the device performance in bio-inspired computing schemes, the transition from 

a single device level to a multidimensional network level has to be explored. At this respect, a 

detailed device model is required, which reproduce the experimental recorded device characteristics 

as close as possible. Here, we modeled the experimental data within the framework of the simple 

voltage driven memristor model of Ref. [9] (cf. Equation 1). In addition, we used a physical 

motivated description for the ionic contributions within the TiO2-x layer under applied bias voltage. 

Therefore, we have assumed that mainly two transport mechanisms are involved in the charge 

transport process: Electronic transport through local conducting filaments and electron tunneling 

(respectively hopping) between TiO2-x defect states. Since both processes might occur simultaneously, 

it is proper to assume a parallel connection of both transport processes. A schematic sketch of the 

equivalent circuit model is superimposed to the device structure in Figure 1(a). Therefore, the 

electron tunneling between individual defect states was modeled as a constant mean tunneling 

current described by  

 
(2)  

with AT and α
+,-

 being positive constants. The oxygen ion diffusion under the applied bias voltage has 

been assumed to be the reason of a filament formation according to findings of Ref. [21,22]. In the 

model the filamentary contribution to the overall device conductance has been taken into account 

using the diode equation  

 
(3)  

as proposed by Szot et al. [21,22] to describe the filamentary behavior, where AT and β are positive 

parameters characterizing the filament. Moreover, back-diffusion of oxygen ions may additionally 

influence the dynamics of the resistance switching process, which has been recently recognized as 

essential factors with respect to the system dynamics at the network level [13,23,24]. To take oxygen 

ion back-diffusion additionally into account, a memristive state depended back diffusion term is 

added, so that Equation 1 reads  

 
(4)  

Here, κdiff  and κback  are the respective constants for the diffusion process, while g(x) is the in   

Ref. [25] defined window function, which takes a reduced ion mobility at the boundaries of the 
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TiO2-x layer into account. Hence, the resistance of the filamentary branch can be therefore calculated 

by RM = xRLRS + (1-x)RHRS, while the total device resistance is therewith given by Rdevice = RM RT 

/(RM +RT). Here RM, RT are the filamentary and tunneling resistances respectively.  

The calculated I-V characteristics are added as orange curves to our experimental recorded data, 

while the used simulation parameters are summarized in table 1. In agreement to our experimental 

I-V curves a homogenous resistive switching characteristic could be obtained for a 20 nm TiO2-x 

thickness (cf. Figure 2(a)), while an increased thickness of 50 nm TiO2-x leads to a binary switching 

behavior. In order to model the experimental I-V curves within our device model the coefficient β of 

Equation 1 has been increased from 1.79 V
−1

 to 25.8 V
−1

 for an increase in the TiO2-x layer thickness 

from 20 nm to 50 nm. This in fact results in a much steeper rise in the TiO2-x filamentary diode 

characteristics according to Eq. 3, which points to a stronger filamentary electron transport 

characteristic and results in I-V curves exhibiting a sharp threshold voltage (see Figure 1(b)). This 

can be also seen by regarding the calculated resistances of both the tunneling and filamentary branch 

of our equivalent circuit model, as depicted in Figure 2. In particular, for the 20 nm thick TiO2-x 

device, the resistance RT (orange line in Figure 2(a)) is much higher compared those of the 

filamentary part (blue line in Figure 2(a)). Hence, RT did not feature significantly to the overall 

device resistance (black line in Figure 2(a)). In contrast to the 20 nm thick TiO2-x device for a 50 nm 

thick TiO2-x device the HRS is strongly dominated by the resistance RT, as it can be seen in Figure 

2(b). Therefore, our simple model shows evidence of a fast filamentary driven switching process in 

case of thicker TiO2-x film and a much homogeneous oxygen diffusion for thinner oxide thicknesses 

with in agreement several investigations [21,26–28]. Therefore, we might assume that during the 

electric-forming step, which has been applied only to those devices consisting of a 50 nm thick 

TiO2-x, conducting filaments were created, where thereafter only local rearrangements of oxygen ions 

are responsible for resistance switching.  

However, it is worth to mention that the presented simulation model covers only first order 

processes, which are involved in the switching mechanism. This might lead to some differences 

between simulation and measured I-V data. The most striking difference has been found for the 20 

nm thick TiO2-x device at the negative voltage branch (cf. Figure 1(b)). While both simulation model 

and experiment show a gradual reset of the device resistance, the thresholds for the reset differs from 

each other. From our experimental investigation a gradual reset of the device resistance has been 

found below −2V, while the simulation model predicts a resetting of the device resistance starting 

from −1V. This might be based on ionic effects at the microscopic scale, which are not covered by 

the here presented device model. In order to describe the underlying physics at a microscopic level in 

more detail more sophisticated simulation models are required, which is, however, outside the scope 

of this investigation.  
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Figure 2. Comparison of the calculated resistances for the electronic transport 

through local conducting filaments (RM), electron tunneling (respectively hopping) 

between TiO2-x defect states (RT) and the total device resistance for devices 

comprising 20 nm thick TiO2-x (b) and 50 nm TiO2-x (c). 

3.2. Synaptic Plasticity Measurements 

In a theoretical work by Zamarreño-Ramos et al. [29] it has been shown that the synaptic weight 

ω between individual neurons can be related to the state variable x of memristive devices in the 

framework of the ideal voltage driven memristor model (cf. Equation 1). This in fact implies that the 

conductance of the memristive device is proportional to ω, in which biological plasticity mechanisms 

are emulated by changes in the device conductance under suitable voltage pulse trains. In this respect 

it is worth mentioning that biological computing schemes manifest in network behavior, where 

synaptic plasticity is a (local) cellular precondition. Therefore, binary resistive switching devices 

require different network topologies as continuous resistance switching devices. [30] However, in 

this investigation we study pattern recognition based on the simulation model proposed in Ref. [1,2], 

which require gradual resistance switching devices. For the following investigations it is therefore 

proper to focus on that device, which exhibits a gradual (homogeneous) switching behavior, i.e. the 

device of Figure 1(b) with a TiO2-x layer thickness of 20 nm.  

In order to study the capability of synaptic plasticity emulations with the memristive device 

exhibiting an analog switching mechanism (Figure 1(b)), voltage pulse trains consisting of a set of n 

equivalent positive voltage pulses (potentiation pulses) followed by n equivalent negative voltage 

pulses (depression pulses) were used. For resistance readout a positive read pulse (with voltage 

amplitude much lower than Vset to do not affect the device resistance) was applied after every 

potentiation and depression pulse. The obtained findings are presented in Figure 3 (a) together with 

simulation potentiation/depression data (lower panel of Figure 3(a)). More precisely, pulse trains of 

34 potentiation pulses and 34 depression pulses were applied, while the pulse duration was varied 

between 0.5 ms, 4 ms and 15 ms. As a result, a pulse time of 0.5 ms only weakly affects the 

resistance of the Al/Al2O3/TiO2-x/Al device (blue data points in Figure 3(a)), while an increased pulse 

time shows stronger changes in the device conductance. These experimental findings can be also 
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reproduced by our numerical simulations (c.f. lower panel in Figure 3(a)).  

 

Figure 3. Synaptic plasticity measurements and simulation of a Al/Al2O3/TiO2-x/Al 

device comprising 20 nm thick TiO2-x (Simulation parameters are summarized in 

Tab. 1). (a) A sequence of 34 potentiation pulses of +2 V and 34 depression pulses of 

−2 V with pulse lengths of respectively 0.5 ms, 4 ms, and 15 ms. Upper panel of (a) 

are measurement data, while the lower panel are simulation results. (b) 

Experimental and simulated changes of the device conductance after 34 voltage 

pulses of 2 V with varying pulse lengths Δt. (c) Comparison between potentiation 

and depression for different pulse lengths. Therefore, the device has been initially 

set between their HRS and LRS. 

A further important aspect of synaptic plasticity emulations for network computing schemes is 

that the change in the device conductance must be adjusted by the duration of single voltage pulses 

rather than by their pulse height. This implies that temporal differences in synaptic stimulations 

varying the synaptic coupling strength in a different manner, which is at the heart of 

spike-timing-depending plasticity (STDP) [31,32]. In Figure 3(b) experimental and simulated 

changes of the device conductance after application of 34 voltage pulses of 2 V with varying pulse 

lengths are compared. In result, a precise adjustment of the device conductance in dependence of the 

pulse width within the investigated interval of 0.5 ms to 15 ms is recorded, which has been also 

recaptured by our numerical simulation. Moreover, biological computing schemes at the network 

level require associativity, in which the potentiation of several synapses cause a decrease of other 

synapses leading to a comparative situation.[30,33] This in fact requires a balance of conductance 

increase versus conductance decrease under, respectively, positive and negative voltage pulses. In 

order to prove this requirement for the investigated device 34 potentiation or 34 depression pulses 

with different pulse times has been applied to the device, where initially a resistant state between the 

HRS and LRS of the device has been set. The obtained results are depicted in Figure 3(c). As a result, 

we notice a rather balanced behavior between potentiation and depression for the device under 
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investigation. In particular, this means that 34 potentiation pulses affecting equally the device 

conductance, as 34 depression pulses with the same pulse times. For example 34 potentiation pulses 

with 10 ms pulse width leading to an increase of the device conductance of +36 %, while the same 

amount of depression pulses with 10 ms pulse times decrease the device conductance by −33 %. 

3.3. Pattern Recognition 

In order to explore the relation between the individual memristive characteristic and the overall 

system performance in a neural network, we used a compressed version of the network described in 

Refs. [1–3]. A schematic of the simulated neural network is shown in Figure 4. Therein, the 

memristive devices are arranged in a cross-bar array structure connected by input and output neurons, 

respectively, building a feed-forward neural network. Input pattern are applied to the network using 

positive and negative voltage pulses representing the individual pixel and their intensity values, as  

 

Figure 4. (a) Schematic of the simulated neural network. Blue triangles 

corresponding to the respectvely pixel of the input pattern, while gray circles are 

leaky-integrate- and fire output neurons (LIF), which are laterally coupled in an 

inhibitory winner-take-it-all network (WTA) topology. Red dots are the single 

memristive devices. (b) Pulse forms used for simulations: Positive and negative 

pulses Vpre of ±0.6 V has been used for the coding of the grayscale input images, 

while a combined +3.2 V and −3.2 V pulse Vpost is generated from the output neurons. 

The superposition of Vpre and Vpost defines Vsum, which can lead to an increase 

(potentiation) or decrease (depression) of the device conductance. In addition, 

threshold voltages of +3.21 V and −0.61 V have been set for potentiation and 

depression, respectively.   
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we will discuss it below. As output layer leaky integrate and fire neurons are used, which are laterally 

coupled within an inhibitory winner take it all network including adaptive thresholds for the spiking, 

as proposed in Ref. [1,2]. In particular, each of the output neuron receives input from the connecting 

memristive devices of the particular branch of the cross-bar array and changes therewith their 

activity in dependence of the resistance change of the particular connected devices. This enables 

unsupervised learning in such a way that every output neuron creates their specific receptive field 

during learning, while thereafter each of the output neuron will spike in accordance to the before 

learned pattern for a varying input pattern. In the following the different parts of the network are 

discussed in some more detail. 

For performance studies of the network handwritten digits from the MNIST Database are   

used [34]. In total the MNIST Database consist of 60,000 handwritten digits from 250 different 

writers, while every digit is stored in a 256 grayscale image with 28 × 28 pixel. For this investigation 

we are using a subset of 9,000 images out of this database, in which 900 different images per digit 

are applied to the network. In order to reduce the overall amount of memristive devices in the 

network the original 28 × 28 pixel images was reduced to a 14 × 14 pixel, so that only 196 input 

neurons are needed (cf. Figure 4(a)). In fact, therefore the number of input neurons must be 

compromised by the accuracy of the learning results. At this respect, the use of every fourth pixel 

will lead to an acceptable compromise, as shown above. After learning the network is tested with 

1000 unknown images, where every image are applied consecutively five times to the network. The 

pixels of the images are presented as voltage pulses of ±0.6 V. Moreover, it was necessary to use an 

additional threshold voltage, where only above (below) this threshold the device resistance is 

affected by the applied voltages. In particular, we found that the I-V nonlinearity of the here used 

device is not sufficient to define a distinct threshold for the switching process. Therefore, the need of 

selector devices, which provides clear threshold values, or memristive devices with a stronger I-V 

nonlinearity are required. As a threshold for the device resistance update +3.21 V and −0.61 V has 

been chosen, so that positive and negative input pulses of ±0.6 V are well below this threshold (cf. 

Figure 4(b)). The voltage pulse shape generated by the output neurons is shown in Figure4 (b). 

Therefore, the device resistance is affected the most in a situation where input and output pulse 

matches, as sketched in Figure 4(b). In particular, the superposition of a negative input pulse with an 

output neuron generated pulse will lead to a decreasing of the particular device resistance, while the 

superposition of a positive input pulse with a negative output pulse increases the resistance of the 

memristive devices connected to the specific neurons.  

In order to guarantee the functionality of the investigated network, the presented images were 

coded as follows: In advance of an input voltage application each to the network presented pixel 

image is normalized to the interval −1 to 1. Following Ref. [1] the grayscale pi of each pixel are best 

normalized by 

 
(5)  

where pm is the mean grayscale of all pixels of an individual image. After normalization the 

probability of an input spike generation was calculated by using a for each iteration step and pixel 

generated random number r and the absolute value of the normalized pixel |pi
norm

|. In particular, we 

are using the condition that r < |pi
norm

| must be fulfilled so that, respectively, for a positive or negative 

pi
norm

 a positive or negative input spike is generated (cf. Figure 4(b)).  
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For the output neurons leaky-integrate-and-fire neurons are used, which give the in Figure 4(b) 

presented voltage spike Vpost to the network whenever the threshold of the integration is reached. 

Further, all output neurons are arranged in a laterally coupled inhibitory network, in which the first 

spiking neurons resets the integration of all other output neurons. This in fact builds a winner-take-it 

all network architecture and guarantees that individual input patterns are learned by different neurons, 

which is at the heart of the unsupervised learning. Crucial for the learning is an adjustable neuron 

threshold, which guarantees that all output neurons are participating equivalently at the learning 

phase and which can be motivated regarding the process of homeostasis in biological systems. 

Therefore, the threshold of a neuron is increased whenever the spike number (activity) of a neuron is 

above the desired activity and decreased for the other way around. Following Ref. [1] this can be 

achieved by using  

 
(6)  

for the threshold voltage adaptation. Here, γ, Nm, and Ntar are, respectively, a positive constant, the 

mean activity of an individual neuron, and the target activity. 

 

Figure 5. Receptive fields for the ten output neurons of the neural network after 

unsupervised learning. White are corresponding to maximal conductance (strong 

synaptic weight), while black are representing minimal conductance (weak synaptic 

weight).  

In Figure 6(a) conductance maps (receptive fields) of the memristive devices at the specific site 

in the cross-bar-array assigned to each of their particular output neurons are shown. In particular, 

during learning each of the ten output neurons has unsupervised learned one of the input digits and is 

therewith capable to separate those digits thereafter. We like to point out that the network was able to 

learn all ten different digits by only presenting a subset of 9,000 digits out of the 60,000 MNIST 

pattern and by reducing also the resolution of the images from 784 pixels to 196 pixels. In particular, 

the network can clearly discriminate similar appearing digits like the nine (neuron 2 in Figure 5) and 

the four (neuron 10 in Figure 5) and all ten digits are clearly distinguishable within the receptive 

fields of the output neurons.  
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In order to estimate the recognition rate of the system we present 100 distinct digits to the 

network, which have not been shown to the network before. Following Ref. [1] the neuron, which 

spikes most frequently for one of the respectively presented input digit can be associated to them. 

Therefore, we compared the obtained spike intensities with the receptive fields of the output neurons 

(cf. Figure 5). As a result we obtain a recognition rate of 59.8%, which is in agreement to previous 

investigations [1–3]. However, as shown in Ref. [1], the recognition rate can be drastically increased 

by increasing the number of output neurons, since this allows to assign one digit to several output 

neurons. In order to qualitatively study the recognition rate dependence of an increased number of 

output neurons per input pattern in some more detail, we are presented only two different digits to 

the network by using five output neurons. In the first run we are using '0' and '7' as input pattern, 

since those digits are quite different. As a result we were able to reach a recognition rate of 97.5%. 

Thereafter, we are using quite similar digits, i.e. '4' and '9'. Here, the obtained recognition rate was 

still 61.5%. However, the aim of this investigation was to evaluate relevant device requirements and 

performing conditions of our fabricated TiOx-based memristive devices rather than improving 

previous investigations. At this respect, we can point out that memristive devices for this kind of 

applications should exhibits defined threshold voltages, a homogeneous resistive switching 

characteristic, and symmetric set and reset behavior.  

4. Conclusion 

In summary we compared two memristive devices exhibiting different I-V characteristics. 

Although based on the same Al/Al2O3/TiO2-x/Al (bottom to top) layer sequence, a 20 nm and 50 nm 

thick TiO2-x led to analog and digital I-V characteristics, respectively. This result means that even by 

using the same thin film technological procedure, qualitatively distinct I-V characteristics can be 

achieved. The experimental obtained devices characteristics was modeled in an equivalent circuit 

model, which relies on mobile oxygen ions by taking electronic transport through local conducting 

filaments and hopping between TiOx defect states into account. Moreover, to have a realistic model 

for network simulation at the hand a back diffusion of oxygen ions has been taken additionally into 

account.  

As an example for a neural network application of the developed devices, we showed a pattern 

recognition system using the well accepted MNIST Database benchmark system. The recognition 

model system compromises memristive devices with gradual (homogenous) I-V characteristics, a 

cross-bar array with a feed-forward neural network, leaky-integrate-and-fire neurons including a 

winner-take it all strategy. As a result, we found that Al/Al2O3/TiO2-x/Al devices with an thin layer 

are suitable devices for pattern recognition in the presented network topology, since those devices 

exhibits an homogeneous resistive switching behavior as well as a symmetric set and reset behavior. 
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