Citation: Valeriy Ishchuk, Danil Kuzenko, Vladimir Sobolev. Piezoelectric and functional properties of materials with coexisting ferroelectric and antiferroelectric phases[J]. AIMS Materials Science, 2018, 5(4): 711-741. doi: 10.3934/matersci.2018.4.711
[1] | Ye ZG (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications, Elsevier. |
[2] | Uchino K (2017) Advanced piezoelectric materials. Science and Technology, Elsevier. |
[3] | Yang J (2006) Analysis of Piezoelectric Devices, World Scientific. |
[4] | Wu CC, Lee CC, Cao GZ, et al. (2006) Effects of corner frequency on bandwidth and resonance amplitude in designing PZT thin-film actuators. Sensor Actuat A-Phys 125: 178–185. doi: 10.1016/j.sna.2005.07.007 |
[5] | Bastie P, Bornarel J, Dolino G, et al. (1980) Optical observations of coexistence states during 1st order transition in KD2PO4, quartz and NH4C1. Ferroelectrics 26: 789–792. doi: 10.1080/00150198008008172 |
[6] | Korzhenevskiy AL (1984) Regular large-scale superstructures near phase transitions in crystals. Sov Phys Sol State 26: 744–749. |
[7] | Ishchuk VM (1997) Peculiarities of ferro–antiferro–electric phase transitions. 3. Phenomenological approach to the problem of FE- and AFE-phases coexistence. Nonuniform state. Ferroelectrics 198: 99–113. doi: 10.1080/00150199708228341 |
[8] | Levanyuk AP, Sannikov DG (1969) Anomalies in dielectric properties in phase transitions. Sov Phys JETP 28: 134–139. |
[9] | Gufan YUM, Larin ES (1980) On the theory of phase transitions with two order parameters. Sov Phys Sol State 22: 270–275. |
[10] | Benguigui L (1968) Changement de phases ferroélectriques–antiferroélectriques par l'action d'un champ électrique. Applications aux solutions solides à base de PbZrO3. Can J Phys 46: 1627–1636. |
[11] | Ishchuk VM, Zavadskii EA, Presnyakova OV (1984) Phases coexisting and diffusive phase transitions in lead–lanthanum zirconate–titanate. Sov Phys Sol State 26: 724–727. |
[12] | Ishchuk VM, Presnyakova OV (1985) Investigation of PZT solid solutions doped by lanthanum by TEM method. Bull Acad Sci USSR Inorg Mater 21: 1199–1203 (in Russian). |
[13] | Ishchuk VM, Sobolev VL (2016) Local decomposition of solid solutions, nanostructures and optical materials with negative refractive index. Mod Phys Lett B 30: 1650088. doi: 10.1142/S0217984916500871 |
[14] | Randal C, Barber D, Whatmore R, et al. (1987) A microstructural study of the α and β phases in 8.2/70/30 PLZT. Ferroelectrics 76: 311–318. doi: 10.1080/00150198708016951 |
[15] | Akbas MA, Reaney IM, Lee WE (1996) Domain structure–property relations in lead lanthanum zirconate titanate ceramics. J Mater Res 11: 2293–2301. doi: 10.1557/JMR.1996.0292 |
[16] | Zhirnov VA (1959) A contribution to the theory of domain wall in ferroelectrics. Sov Phys JETP 35: 822–825. |
[17] | Lines ME, Glass AM (1977) Principles and Application of Ferroelectrics and Relate Materials, Oxford: Clarendon Press. |
[18] | Ishchuk VM, Samoilenko ZA, Sobolev VL (2006) The kinetics of the local compositional changes at the ferroelectric–antiferroelectric interphase boundaries in lead–lanthanum titanate–zirconate solid solutions. J Phys-Condens Mat 18: 11371–11384. doi: 10.1088/0953-8984/18/49/027 |
[19] | Ishchuk VM, Samoilenko ZA, Sobolev VL (2008) Peculiarities of ferro–antiferroelectric phase transitions. 8. Processes of long-time relaxation. Ferroelectrics 377: 36–54. doi: 10.1080/00150190802523545 |
[20] | Ishchuk VM, Samoilenko ZA, Sobolev VL (2004) Nanostructures and long-time relaxation caused by decomposition at FE–AFE interphase boundaries. Ferroelectrics 298: 123–128. doi: 10.1080/00150190490423327 |
[21] | Ishchuk VM, Ivashkova NI, Lakin EE, et al. (1993) Phase diagram of the system of solid solutions Pb1−X(Li½La½)X(Zr1−YTiY)O3 in the vicinity of the FE–AFE phase stability boundary. II. Phase transitions and induced states. Phase Transit 47: 105–112. doi: 10.1080/01411599408200340 |
[22] | Ishchuk VM, Ivashkova NI, Matveev SV, et al. (1995) Phase diagrams of the system of solid solutions Pb1−x(Li1/2La1/2)x(Zr1−yTy)O3 in the vicinity of FE–AFE phase stability boundary 3. Effects caused by the coexistence of FE and AFE phases. Phase Transit 53: 23–37. doi: 10.1080/01411599508200383 |
[23] | Ishchuk VM, Sobolev VL (2015) Physical effects in the vicinity of the ferroelectric–antiferroelectric interface. J Surface Interface Mater 3: 1–35. doi: 10.1166/jsim.2015.1075 |
[24] | Pashchenko VP, Samoilenko ZA, Ishchuk VM, et al. (1998) Peculiarities of cluster structure of Pb(LiLa)(ZrTi)O3 in ferroelectric–antiferroelectric transition region. J Thechn Phys 68: 43–47 (in Russian). |
[25] | Shalaev VM, Cai WS, Chettiar UK, et al. (2005) Negative index of refraction in optical metamaterials. Opt Lett 30: 3356–3358. doi: 10.1364/OL.30.003356 |
[26] | Zhang S, Fan WJ, Panoiu NC, et al. (2005) Experimental demonstration of near-infrared negative-index metamaterials. Phys Rev Lett 95: 137404. doi: 10.1103/PhysRevLett.95.137404 |
[27] | Zhang S, Fan WJ, Malloy KJ, et al. (2006) Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies. J Opt Soc Am B 23: 434–438. doi: 10.1364/JOSAB.23.000434 |
[28] | Ishchuk VM, Matveev SV (1995) Peculiarities of ferro–antiferroelectric phase transitions. 2. Effects caused by dipole-ordered phases coexistence. Ferroelectrics 163: 89–101. doi: 10.1080/00150199508208267 |
[29] | Vasilevskaja AS, Grodnenskiy IM, Sonin AS (1977) Controlled light scattering in transparent ferroelectric ceramics. Sov Phys Sol State 19: 460–468. |
[30] | Ishchuk VM (1998) Peculiarities of ferro–antiferroelectric phase transitions. 4. Intermediate states in ferro- and antiferroelectrics. Ferroelectrics 209: 569–588. doi: 10.1080/00150199808018071 |
[31] | Bar'yakhtar VG, Bogdanov AN, Yablonskiy DA (1998) The physics of magnetic domains. Sov Phys Usp 31: 810–835. |
[32] | Bar'yakhtar VG, Borovik AE, Popov VA (1972) Theory of the intermediate state of antiferromagnets. Sov Phys JETP 35: 1169–1173. |
[33] | Ishchuk VM, Sobolev VL, Spiridonov NA (2008) Phase transition via intermediate state and control of piezoelectric parameters. Ferroelectrics 362: 64–71. doi: 10.1080/00150190802001161 |
[34] | Carl K, Geisen K (1973) Dielectric and optical properties of a quasi-ferroelectric PLZT ceramic. P IEEE 61: 967–974. doi: 10.1109/PROC.1973.9186 |
[35] | Ishchuk VM, Sobolev VL (2007) Electric field dependence of piezoelectric properties of lanthanum-modified lead–zirconate–titanate solid solutions at the phase transition via intermediate state. J Appl Phys 101: 124103. doi: 10.1063/1.2748436 |
[36] | Ishchuk VM (2001) Was it necessary to introduce the notion“relaxor ferroelectrics”?—the problem of phase transitions in (Pb,Li½La½)(Zr,Ti)O3, (Pb,La)(Zr,Ti)O3, Pb(Mg1/3Nb2/3)O3, Pb(InNb½)O3. and related materials. 1. Model conceptions. Ferroelectrics doi: 10.1080/00150190108225969 |
[37] | Ishchuk VM (2001) Peculiarities of ferro–antifer–roelectric phase transitions. 7. Two-phase (FE + AFE) nucleation and problem of diffusive paraelectric phase transitions. Ferroelectrics 256: 129–150. doi: 10.1080/00150190108015979 |
[38] | Ishchuk VM, Sobolev VL (2002) Investigation of two-phase nucleation in paraelectric phase of ferroelectrics with ferroelectric–antiferroelectric–paraelectric triple point. J Appl Phys 92: 2086–2093. doi: 10.1063/1.1493661 |
[39] | Noheda B, Cox DE, Shirane G, et al. (1999) A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3 solid solution. Appl Phys Lett 74: 2059–2061. doi: 10.1063/1.123756 |
[40] | Noheda B, GonzaloJA, Cross LE, et al. (2000) Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr0.52Ti0.48O3. Phys Rev B 61: 8687–8695. doi: 10.1103/PhysRevB.61.8687 |
[41] | Noheda B, Cox DE, Shirane G, et al. (2000) Stability of the monoclinic phase in the ferroelectric perovskite Pb(Zr1−xTix)O3. Phys Rev B 63: 014103. doi: 10.1103/PhysRevB.63.014103 |
[42] | Pandey D, Singh AK, Baik S (2008) Stability of ferroic phases in the highly piezoelectric Pb(ZrxTi1−x)O3 ceramics. Acta Crystallogr A 64: 192–203. doi: 10.1107/S0108767307055511 |
[43] | Ibrahim ABMA, Murgan R, Rahman MKA, et al. (2011) Morphotropic Phase Boundary in Ferroelectric Materials, In: Lallart M, Ferroelectrics—Physical Effects, IntechOpen. |
[44] | Heitmann AA, Rossetti GA (2014) Thermodynamics of ferroelectric solid solutions with morphotropic phase boundaries. J Am Ceram Soc 97: 1661. doi: 10.1111/jace.12979 |
[45] | Cordero F (2015) Elastic properties and enhanced piezoelectric response at morphotropic phase boundaries. Materials 8: 8195–8245. doi: 10.3390/ma8125452 |
[46] | Ishchuk VM, Kuzenko DV, Sobolev VL (2017) Effects caused by antiferroelectric nanodomains in PZT-based coarse-grained ceramics with compositions from the morphotropic boundary region. J Adv Dielect 7: 1750005. doi: 10.1142/S2010135X17500059 |