Citation: Rong Ming Lin. Elastic Buckling Behaviour of General Multi-Layered Graphene Sheets[J]. AIMS Materials Science, 2015, 2(2): 61-78. doi: 10.3934/matersci.2015.2.61
[1] | Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mater 6: 183-191. doi: 10.1038/nmat1849 |
[2] | Novoselov KS, Geim AK, Morozov SV, et al. (2004) Electric field effect in atomically thin carbon films. Science 306: 666-669. doi: 10.1126/science.1102896 |
[3] | Bunch JS, van der Zande1 AM, Verbridge SS, et al. (2007) Electromechanical resonators from graphene sheets. Science 315: 490-493. doi: 10.1126/science.1136836 |
[4] | Garcia-Sanchez D, van der Zande AM, Paulo AS, et al. (2008) Imaging mechanical vibration in suspended graphene sheets. Nano Lett 8: 1399-1403. doi: 10.1021/nl080201h |
[5] | Chen C, Rosenblatt S, Bolotin KI, et al. (2009) Performance of monolayer graphene mechanical resonators with electrical readout. Nature Nanotech 4: 861-867. doi: 10.1038/nnano.2009.267 |
[6] | van der Zande AM, Barton RA, Alden JS, et al. (2010) Large-scale arrays of single-layer graphene resonators. Nano Lett 10: 4869-4873. doi: 10.1021/nl102713c |
[7] | Singh V, Sengupta S, Solanki1 HS, et al. (2010) Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nano-electro-mechanical systems resonators. Nanotechnology 21: 165204. doi: 10.1088/0957-4484/21/16/165204 |
[8] | Song XF, Oksanen M, Sillanpää MA, et al. (2012) Stamp transferred suspended graphene mechanical resonator for radio frequency electrical readout. Nano Lett 12: 198-202. doi: 10.1021/nl203305q |
[9] | Sakhaee-Pour A, Ahmadian MT, Vafai A (2008) Potential application of single-layered graphene sheet as strain sensor. Solid State Commun 147: 336-340. doi: 10.1016/j.ssc.2008.04.016 |
[10] | Dan YP, Lu Y, Kybert NJ, et al. (2009) Intrinsic response of graphene vapour sensors. Nano Lett9: 1472-1475. |
[11] | Cheng ZG, Li Q, Li ZJ, et al. (2010) Suspended graphene sensors with improved signal and reduced noise. Nano Lett 10: 1864-1868. doi: 10.1021/nl100633g |
[12] | Lu Y, Goldsmith BR, Kybert N, et al. (2010) DNA-decorated graphene chemical sensors. Appl Phys Lett 97: 083107. doi: 10.1063/1.3483128 |
[13] | Ijima S, Brabec C, Maiti A, et al. (1996) Structural flexibility of carbon nanotubes. J Chem Phys104: 2089-2092. |
[14] | Hernandez E, Goze C, Bernier P, et al. (1998) Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett 80: 4502-4505. doi: 10.1103/PhysRevLett.80.4502 |
[15] | Sanchez-Portal D, Artacho E, Soler JM, et al. (1999) Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys Rev B 59: 12678-12688. doi: 10.1103/PhysRevB.59.12678 |
[16] | Govindjee S, Sackman JL (1999) On the use of continuum mechanics to estimate the properties of nanotubes Solid State Commun 110: 227-230. |
[17] | Yoon J, Ru CQ, Mioduchowski A (2003) Vibration of an embedded multiwall carbon nanotube. Composite Sci Technol 63: 1533-1545. doi: 10.1016/S0266-3538(03)00058-7 |
[18] | Ru CQ (2000) Effective bending stiffness of carbon nanotubes. Phys Rev B 62: 9973-9976. doi: 10.1103/PhysRevB.62.9973 |
[19] | Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Structures 40: 2487-2499. doi: 10.1016/S0020-7683(03)00056-8 |
[20] | Chowdhury R, Adhikari S, Scarpa F, et al. (2011) Transverse vibration of single-layer graphene sheets. J Phys D—Appl Phys 44: 205401 |
[21] | Pradhan SC, Sahu B (2010) Vibration of single layer graphene sheet based on non-local elasticity and higher order shear deformation theory. J Comp Theor Nanosci 7: 1042-1050. doi: 10.1166/jctn.2010.1451 |
[22] | Murmu T, Pradhan SC (2009) Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory. J Appl Phys 105: 064319. doi: 10.1063/1.3091292 |
[23] | Sakhaee-Pour A (2009) Elastic buckling of single-layered graphene sheet. Comp Mater Sci 45:266-270. doi: 10.1016/j.commatsci.2008.09.024 |
[24] | Pradhan SC, Murmu T (2009) Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum theory. Comp Mater Sci 47: 268-274. doi: 10.1016/j.commatsci.2009.08.001 |
[25] | Pradhan SC (2009) Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory. Phys Lett A 373: 4182-4188. doi: 10.1016/j.physleta.2009.09.021 |
[26] | Pradhan SC, Murmu T (2010) Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory. Physica E-Low Dimensional System Nanostructures 42: 1293-1301. doi: 10.1016/j.physe.2009.10.053 |
[27] | Kumar S, Hembram KPSS, Waghmare UV (2010) Intrinsic buckling strength of graphene: Firstprinciples density functional theory calculations. Phys Rev B 82: 11-15. |
[28] | Wilber JP (2010) Buckling of Graphene Layers Supported by Rigid Substrates. J Comp Theor Nanosci 7: 2338-2348. doi: 10.1166/jctn.2010.1617 |
[29] | Taziev RM, Prinz VY (2011) Buckling of a single-layered graphene sheet on an initially strained InGaAs thin plate. Nanotechnology 22: 305705. doi: 10.1088/0957-4484/22/30/305705 |
[30] | Farajpour A, Mohammadi M, Shahidi AR, et al. (2011) Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model. Pysical E-Low-Dimensional Systems Nanotechnologies 43: 1820-1825. doi: 10.1016/j.physe.2011.06.018 |
[31] | Samaei AT, Abbasion S, Mirsayar MM (2011) Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory. Mech Res Commun 38:481-485. doi: 10.1016/j.mechrescom.2011.06.003 |
[32] | Ansari R, Rouhi H (2012) Explicit analytical expressions for the critical buckling stresses in a monolayer graphene sheet based on nonlocal elasticity. Solid State Commun 152: 56-59. doi: 10.1016/j.ssc.2011.11.004 |
[33] | Rouhi S, Ansari R (2012) Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Physica E-Low-Dimensional Systems Nanostructures44: 764-772. |
[34] | Girifalco LA, Lad RA (1956) Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System. J Chem Phys 25: 693-697. doi: 10.1063/1.1743030 |
[35] | Jomehzadeh E, Saidi AR (2011) A study on large amplitude vibration of multilayered graphene sheets. Comp Mater Sci 50: 1043-1051. doi: 10.1016/j.commatsci.2010.10.045 |
[36] | Saito R, Matsuo R, T Kimura, et al. (2001) Anomalous potential barrier of double-wall carbon nanotube. Chem Phys Lett 348: 187-193. doi: 10.1016/S0009-2614(01)01127-7 |
[37] | Shu C, Richards BE (1992) Application of Generalized Differential Quadrature to Solve Two- Dimensional Imcompressible Navier-Stokes Equations. Int J Numerical Methods Fluids 15: 791-798. doi: 10.1002/fld.1650150704 |
[38] | Du H, Lim MK, Lin RM (1995) Application of Generalized Differential Quadrature to Vibration Analysis. J Sound and Vibration 181: 279-293. doi: 10.1006/jsvi.1995.0140 |
[39] | Shu C (2000) Differential Quadrature and Its Application in Engineering, London, Springer- Verlag. |
[40] | Timoshenko SP, Gere JM (1961) Theory of Elastic Stability, New York, McGraw-Hill. |
[41] | Lin RM, Lim MK, Du H (1994) Large Deflection Analysis of Plates Under Thermal Loading. Comp Method Appl Mech Eng 117: 381-390. doi: 10.1016/0045-7825(94)90124-4 |
[42] | Rouhi S, Ansari R (2012) Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Physica E-Low-Dimensional Systems Nanostructures44: 764-772. |