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Abstract: Elastic buckling behaviour of multi-layered graphene sheets is rigorously investigated. 
Van der Waals forces are modelled, to a first order approximation, as linear physical springs which 
connect the nodes between the layers. Critical buckling loads and their associated modes are 
established and analyzed under different boundary conditions, aspect ratios and compressive loading 
ratios in the case of graphene sheets compressed in two perpendicular directions. Various practically 
possible loading configurations are examined and their effect on buckling characteristics is assessed. 
To model more accurately the buckling behaviour of multi-layered graphene sheets, a physically 
more representative and realistic mixed boundary support concept is proposed and applied. For the 
fundamental buckling mode under mixed boundary support, the layers with different boundary 
supports deform similarly but non-identically, leading to resultant van der Waals bonding forces 
between the layers which in turn affect critical buckling load. Results are compared with existing 
known solutions to illustrate the excellent numerical accuracy of the proposed modelling approach. 
The buckling characteristics of graphene sheets presented in this paper form a comprehensive and 
wholesome study which can be used as potential structural design guideline when graphene sheets 
are employed for nano-scale sensing and actuation applications such as nano-electro-mechanical 
systems. 
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1.  Introduction 

Graphene is chemically one of the two allotropes of carbon in its spatial presentations in which 
a flat monolayer of carbon atoms are tightly packed into a two-dimensional honeycomb lattice [1]. It 
is the thinnest known film in the universe and the strongest ever measured in mechanical strength; its 
charge carriers exhibit extremely high intrinsic mobility and it can sustain current densities six orders 
of magnitude higher than that of copper; it has excellent thermal conductivity and superb optical 
performance. Fascinated by these newly discovered extraordinary and superb physical, mechanical, 
electrical, thermal and optical properties of graphene sheets, enormous research resources and efforts 
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have recently been directed to explore their fundamental properties and their potential engineering 
applications since they were first discovered in 2004 by Novoselov et al [2]. Studies of graphene 
sheets have since become a key fundamental issue in nanotechnology since fullerenes and carbon 
nanotubes can be generally considered as deformed graphite sheets. Among the many emerging and 
important applications, graphene has been notably employed as mechanical resonators [3–8] and 
physical sensors [9–12]. Nevertheless, successful applications of graphene, both as resonators and 
sensors, have led to an important area of research which needs to be accomplished. That is to 
establish structural characteristics of graphene sheets accurately and reliably when they are 
integrated into a resonator or a sensor system. Since controlled experimental characterizations at 
nanosacle are still difficult to achieve to date, various analytical/numerical methods of predicting 
these properties have been rigorously pursued recently. These methods can be roughly classified as 
atomistic-based methods and continuum-based methods.  

Atomistic-based methods such as the classical molecular dynamics simulation [13], tight-
binding molecular dynamics [14] and density function theory [15] have been employed to study 
rigorously mechanical properties of carbon nanotubes and graphene sheets in static bending, 
dynamic vibration and buckling behaviour. However, these simulation methods remain formidably 
expensive in computational requirement, even with today’s computational efficiency and speed. As a 
result, researchers in this area have been constantly searching for more efficient computational 
methods. Recently, researchers have increasingly turned their attentions to the much more familiar 
continuum structural mechanics models with the promise that these can be applicable to nanoscale 
structural components such as graphene sheets. Alongside with these thoughts, many continuum 
structural mechanics models have been proposed during the last decade. These include the beam 
modelling proposed by Govindjee and Sackman [16] and Yoon et al. [17], the cylindrical shell model 
proposed by Ru et al. [18] and the space truss model by Li and Chou [19]. On the other hand, 
detailed vibration analysis based on continuum mechanics as well as molecular mechanics has been 
carried out by Chowdhury et al. [20]. Based on non-local elasticity and higher order shear 
deformation theory, vibration modes of single graphene sheets were established [21]. When 
embedded on elastic foundation, dynamic properties of single layered graphene sheet were examined 
and the effect of elastic foundation assessed by Murmu and Pradhan [22].  

With reference to structural buckling analyses of graphene sheets, much research effort has been 
paid to the studies of critical buckling loads and modes of graphenes subject to in-plane loadings and 
a number of useful methods have been developed. By employing an atomistic modeling approach, 
Sakhaee-Pour investigated elastic buckling behavior of defect-free single-layered graphene sheet 
(SLGS) and used the simulation results to develop predictive equations via a statistical nonlinear 
regression model [23]. Buckling analysis of bi-axially compressed single-layered graphene sheets 
was studied using nonlocal continuum mechanics, taking into account of nonlocal size effects [24]. 
Higher order shear deformation theory was reformulated using the nonlocal differential constitutive 
relations and applied to study buckling characteristics of nano-plates such as single-layered graphene 
sheets [25]. Buckling behaviour of single-layered graphene sheet embedded in an elastic medium 
was examined together with and without nonlocal elasticity and small-size effect [26]. Using first-
principles theoretical analysis, Kumar et al. [27] established the in-plane buckling characteristics of a 
graphene layer, and demonstrated a weakly linear component in the dispersion of graphene's flexural 
acoustic mode, which is believed to be quadratic. Wilber [28] formulated a nonlinear continuum 
model of a graphene sheet supported by a flat rigid substrate and used the model to analyze its 
buckling behaviour. Taziev and Prinz [29] studied the elastic buckling behavior of a defect-free 
single-layered graphene sheet deposited on a strained InGaAs substrate. On the other hand, buckling 
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behavior of a nanoscale circular graphene under uniform radial compression was studied by 
Farajpour et al. [30], together with nonlocal small size effect. Samaei et al. [31] investigated the 
effect of length scale on buckling behaviour of a single-layered graphene sheet embedded in a 
Pasternak elastic medium using a nonlocal Mindlin plate theory. Ansari and Rouhi [32] developed 
explicit formula to study the bi-axial buckling of monolayered graphene sheets based upon 
continuum mechanics and small scale effect. More recently, an atomistic finite element model was 
developed to study the buckling and vibration characteristics of single-layered graphene sheets by 
Rouhi and Ansari [33]. 

From the review of those existing work, it becomes obvious that much research has been 
conducted to date on the buckling behaviour of graphene sheets. However, most of these reported 
research focused on the simpler case of a single layered graphene and while buckling characteristics 
of a single layered graphene are important, stacked multi-layered graphene sheets are being more 
increasingly employed in practice for innovative engineering applications. When multi-layered 
graphene sheets are considered, their structural behaviour become far more complex since they are 
essentially assembled structural systems with inter-layer van der Waals bonding forces. As a result, 
modelling of buckling behaviour of multi-layered graphene sheets becomes more challenging, 
demanding more sophisticated numerical technique and appropriate treatment of bonding forces and 
boundary constraints. In this paper, elastic buckling behaviour of multi-layered graphene sheets in 
the presence of van der Waals bonding forces has been systematically and successfully investigated 
using generalized differential quadrature (GDQ). Van der Waal forces are modelled, to a first order 
approximation, as linear physical springs which connect the nodes between the layers. Critical 
buckling loads and their associated modes are established and analyzed under different boundary 
conditions, aspect ratios and compressive loading ratios in the case of graphene sheets compressed in 
two perpendicular directions. Various practically possible loading configurations are examined and 
their effect on buckling characteristics is assessed. To model more accurately the buckling behaviour 
of multi-layered graphene sheets, a physically more representative and realistic mixed boundary 
support concept is proposed and applied. For the fundamental buckling mode under mixed boundary 
support, the layers with different boundary supports deform similarly but non-identically, leading to 
resultant van der Waals bonding forces between the layers which in turn affect the critical buckling 
load. Results are compared with existing known solutions to illustrate the excellent accuracy of the 
proposed modelling approach. The buckling characteristics of graphene sheets presented in this 
paper form a comprehensive and wholesome study which can be used as potential structural design 
guideline when graphene sheets are employed for nano-scale sensing and actuation applications such 
as nano-electro-mechanical systems (NEMS). 

2. Materials and Method 

2.1. Equations of Motion for Buckling of Multi-layered Graphenes  

Consider in general a multi-layered graphene sheets (MLGS) that is supported with given 
boundary conditions. The chemical bonds are assumed to be formed between the layers which are the 
van der Waals forces. The MLGS is modelled as a stack of plates of length of each plate a, width b, 
thickness h, mass density ρ, and Young’s modulus E, as shown in Figure 1.  
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Figure 1. A multi-layered graphene sheets. 

In the general case of L layered graphene sheets, each layer can be closely modelled as a plate 
with the chemical bonding forces between the layers to be modelled as pressure force applied to each 
of the layers, the L coupled equations of motion which govern the buckling characteristics of the 
graphene sheets can be written as, 





























































































yx

w

L

N

y

w

L

N

x

w

L

N
q

y

w
D

yx

w
D

x

w
D

yx

w

L

N

y

w

L

N

x

w

L

N
q

y

w
D

yx

w
D

x

w
D

yx

w

L

N

y

w

L

N

x

w

L

N
q

y

w
D

yx

w
D

x

w
D

LxyLyLx
L

LLL

xyyx

xyyx

2

2

2

2

2

4

4

22

4

4

4

2
2

2
2

2

2
2

2

24
2

4

22
2

4

4
2

4

1
2

2
1

2

2
1

2

14
1

4

22
1

4

4
1

4

2
2

.

.

.

2
2

2
2

                                   (1) 

where x is the lengthwise and y is the breadthwise coordinates, wi (i=1, 2, …, L) is the buckling 
displacement of ith graphene sheet, which is assumed to be positive upwards, D is the flexural 
rigidity of the individual sheet, ݍ௜ is the pressure that is exerted on sheet i due to the van der Waals 
interactions between the layers, and Nx, Ny, and Nxy are the uniform external forces in x and y 
directions and the shear force. The equilibrium distance between two neighbouring sheets is assumed 
to be 0.34 nm [34]. The initial pressure between layers in the absence of buckling deformation can be 
assumed to be negligible if the initial interlayer gap is taken as 0.34 nm. When buckling deformation 
is considered, the pressure can then be expressed as linearly proportional to the relative deflections 
between the layers, 
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where the coefficients cij  are derived in [35] by differentiating the potential function given in [34] , 
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where acc is the C-C carbon bond length taken as acc = 1.42Å,  ݖ௜̅ ൌ ௜/ܽ௖௖ݖ  is the normalized 
coordinate of the ith layer in the thickness direction with origin at the mid-plane of the graphene 
sheets,  and   are parameters associated with the physical properties of the material and are 
assumed to be = 2.968 meV, and = 3.407Å  [36]. 

Boundary conditions need to be specified before the buckling problem formulated in (1) can be 
solved. In the case of clamped edges, these become, 
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In the case of simply supported edges, these boundary conditions become, 



























.,,2,1

,00

,00

2

2

2
1

2

Li

bywhen
y

w
w

axwhen
x

w
w

i
i

i



                                                                                                    (5) 

In the general case of multi-directional buckling of graphenes subject simultaneously to Nx and 
Ny in x and y directions and shear force Nxy, it is customary to assume that the ratios between these 
forces are known and remain constant during the buckling process. Let Ny=Nx and Nxy=Nx, then (1) 
can be re-written as, 
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The general buckling problem of multi-layered graphene sheets formulated as equation (6) can 
be solved for all the critical buckling loads and buckling modes of interest using Generalized 
Differential Quadrature (GDQ) subject to boundary conditions of (4) or (5) and van der Waals 
interaction forces as specified in (2). In the special uni-directional buckling, the loading ratios are 
assumed to be = 0 and = 0.  

2.2. Generalized Differential Quadrature Method 

Generalized differential quadrature (GDQ) method was developed by Shu and Richards [37] for 
computational fluid mechanics and has been successfully developed and applied to a wide range of 
structural and dynamics problems [38]. The basic underlying principle of GDQ is that the partial 
derivative of a function with respect to a spatial variable at a grid point can be expressed as a linear 
weighted sum of the function values at all grid points defined for the computational domain [39]. In 
the case of a graphene sheet, the computational domain is defined as 0 ൑ ݔ ൑ ܽ, 0 ൑ ݕ ൑ ܾ. If this 
domain is meshed as ܰ ൈܯ grid points, then, in GDQ, the partial derivative of the displacement w 
can in general be written as [39], 
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where the weighting coefficients  ܥ௜௝
ሺ௠ሻ

 required can be computed in a simple recursive fashion as 

discussed in detail in [39], 
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where (xk) is defined as,  
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The special case when  i = j,  the  ܥ௜௜
ሺଵሻ can be determined as, 
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Once the coefficients for first order derivatives are obtained, those for the second and higher 
order derivatives can be simply established based on following recurrence relationship, 
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The corresponding coefficients  ̅ܥ௜௝
ሺ௠ሻ associated with derivatives with respect to y required can 

be similarly determined [39]. 
In the case of buckling analysis, assuming transverse displacement of the ith layer as, 

     NiYXWyxw ii ,,2,1,,                                                                                    (13) 

where X and Y are the normalized non-dimensional coordinates used in numerical implementation. 
Upon substituting (13) into the general equation of motion (6), the following can be obtained in 
terms of unknown buckling displacement amplitude Wi and dimensionless critical buckling load 
parameter  as, 
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where  = a/b, ܺ ൌ ܻ ,ܽ/ݔ ൌ ௜̅௝ܿ ,ܾ/ݕ ൌ ܿ௜௝ܽ
ସ/ܦ, a and b are the length and width of the graphene 

sheet and the dimensionless critical load parameter  is defined as, 
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The above equation (14) can be discretized using GDQ as, 
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  (16) 

Similarly, the boundary condition (4) can be discretized to become, 
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                                                                           (17) 

Other boundary conditions can be similarly treated. In numerical implementation, (17) is solved 
for the displacements of the two lines of nodes next to the boundaries along all 4 edges which are 
expressed in terms of displacements of the remaining nodes. Such displacement relationships derived 
from boundary condition (17) are then incorporated in (16) to eliminate those displacements next to 
the boundaries, leading to a standard eigenvalue problem being formulated from which, all the 
critical buckling loads and buckling modes of the graphene sheets with given boundary conditions 
can be computed. 

3. Results and Discussion 

The main focus of this paper is on buckling analysis of MLGSs in which the layers are bonded 
through van der Waals interactions. But first, single layered grapheme sheets under various boundary 
and loading conditions are studied and results compared with known solutions available to fully 
establish the practical capability of the proposed aproach. For convenience of practical 
implementations, uniform grid point distributions are assumed throughout numerical simulations in 
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this paper although non-uniform grid distributions have been used and reported with good 
performance [39]. For a square graphene sheet, its length is assumed to be a = 10 m, its thickness h 
= 0.34 nm, Young’s modulus E = 1.06 TPa, Poisson’s ratio  = 0.25, and the mass density  = 2250 
kg/m3. The buckling modes with all edges simply supported are computed and are shown in Fig. 2 in 
the case of  ܰ ൈ ܯ ൌ 25 ൈ 25 corresponding to an eigenvalue problem of 441 active degrees of 
freedom. These modes are ordered according to the half wave number m, which gives the number of 
half waves into which the graphene buckles in the direction of compressive loading.   

 

Figure 2. First 6 buckling modes of a simply supported square grapheme. 

The critical buckling loads associated with these buckling modes are shown in Table 1. For the 
special case of a square graphene with simply supported edges, exact solutions happen to exist [40] 
and these are compared with those predicted using the proposed approach. As can be seen from 
Table 1, the difference between these 2 sets of results is indeed very small, indicating the excellent 
numerical accuracy of the proposed method. Also included in Table 1 are those critical buckling 
loads of a square graphene with clamped boundary supports. Clearly, these buckling loads are much 
higher than those of simply supported due to more rigid constraints clamped supports introduce.  
From the dimensionless critical load parameter , one can derive the physical buckling load Nx based 
on the definition of  in equation (15). 

m = 1 

m = 2 

m = 3 

m = 4 

m = 5 

m = 6 
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Table 1. Critical buckling loads of simply supported and clamped square graphenes. 

 
 

Buckling 
Mode No. 

 

S-S-S-S Support 
 

C-C-C-C Support 



 

Exact [40]

 

% Error 
 

Nx  (N/m)


 
 

Nx  (N/m) 

1 39.4797 39.4784 0.0033 % 1.4610 99.4031 3.6785 

2 61.6970 61.6850 0.0245 % 2.2819 114.598 8.4872 

3 109.728 109.662 0.0602 % 4.0599 245.662 18.188 

4 178.318 178.270 0.0269 % 6.6037 264.803 19.606 

5 267.020 266.874 0.0547 % 9.8886 475.779 35.226 

6 375.652 375.320 0.0879 % 13.912 501.926 37.162 

In practical buckling analysis, it is usually the lowest fundamental critical load which actually 
determines structural buckling strength and hence in subsequent discussions, only the first critical 
load will be considered. In buckling of rectangular graphenes, it is of practical interest to examine 
how the fundamental critical load changes as aspect ratio  and compressive loading ratio  in the 
case of loadings applied in two perpendicular directions change. For a square graphene, when one 
side length a is fixed (a = 10 m), the change of the other side b leads to a change in  (  a/b), 
which in turn leads to a change in the computed fundamental critical load 

1
 as shown in Figure 3. It 

is interesting to note that a minimum critical load is observed when the graphene is square. The 
critical load 

1
 increases as  increases for > 1. For < 1 however, it decreases as  increases. 

This is due to the fact that for every value greater than 1, there is a corresponding  value less than 
1 which makes the two graphenes similar in geometrical shape and hence the same dimensionless 
critical load 

1
.  

 

Figure 3. Critical load versus aspect ratio (a = 10 m). 
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In the practical case where a graphene is simultaneously compressed in both x and y directions 
and the compressive loading ratio is known to be , critical load in this case has been found to 
decrease considerably, especially for higher values of . This means that under simultaneous x and y 
direction compressive forces, the magnitude of force required for a graphene to buckle becomes 
smaller than that of a single force applied in a one direction. This is illustrated clearly in Figure 4 in 
the case of a square graphene with side length a = 10 m. 

 

Figure 4. Critical load versus loading ratio of a square grapheme. 

Similarly, when a graphene is subjected to two directional compressive loadings, for every 
given aspect ratio value, the critical load required for the graphene to buckle becomes smaller than 
that required in the case of uni-directional loading. In the case of an assumed compressive loading 
ratio = 1, critical loads are computed at different values of  and these are shown in Figure 5. As 
compared with the results shown in Figure 2, the critical loads in this case of dual-directional 
loadings are about half of those obtained in the case of uni-directional loading when a compressive 
loading ratio = 1 is assumed. 

 

Figure 5. Critical load versus aspect ratio (a = 10 m,  = 1). 



72 

AIMS Materials Science                                                                 Volume 2, Issue 2, 61-78. 

Graphenes are increasingly being deployed in many novel engineering applications such as 
NEMS in a multi-layered stacked form rather than a single layered isolated form, and as a result, 
accurate and reliable prediction of buckling behaviour of MLGSs becomes more important. One key 
difference in the modelling of buckling characteristics of MLGSs is the inclusion of van der Waals 
forces which hold the layers together as bonding forces. These forces are modelled, to a first order 
approximation, as linear springs which connect the layers and produce spring forces which are 
proportional to the relative displacements between the layers. Our analytical analysis and numerical 
simulations have demonstrated that for a MLGSs, when all the layers involved are assumed to be 
identical with assumed identical boundary supports, the layers will undergo the same displacement 
under buckling load as far as the fundamental mode is concerned. Such identical displacement 
pattern leads to no relative displacements between the layers and hence no additional van der Waals 
forces with reference to equilibrium state. The layers virtually deform independently of each other 
and as a result, the non-dimensional critical load 

1
 becomes the same as that of a single layer with 

the same boundary support. Nonetheless, the actual physical critical load Nx increases as the number 
of layer L increases as can be seen from equation (15) in which Nx is linearly proportional to L. So, 

having provided the buckling characteristics of single layered graphenes, buckling characteristics of 
MLGSs can be readily obtained if identical boundary supports for all the layers are assumed. 

In practice however, such assumption of identical boundary supports is perhaps very unrealistic 
and erroneous since in any typical practical application of MLGSs, the surface layers and the internal 
layers are very likely to be subjected to different support conditions. A more accurate and physically 
more representative mixed boundary supports is desired to improve modelling accuracy. In view of 
the common physically clamped and substrate embedded edge supports of MLGSs in practice, it is 
perhaps more logical to model the surface layers as clamped support since for these layers, the 
rotations are constrained at the edges while the internal layers as simply-supported since they are 
almost free to rotate at the edges. Based on these practical observations and logical reasoning, a 
mixed boundary concept is proposed here and is applied to analyzed buckling characteristics of 
MLGSs. Critical load of MLGSs with as many as 30 layers has been computed using the proposed 
numerical approach and mixed boundary support concept, resulting in a non-symmetric eigenvalue 
problem of 265,230 active degrees of freedom. For a square 5-layered graphene sheets, its 
fundamental buckling mode is shown in Figure 6. The layers deform similarly as expected, but layers 
with different boundary supports have been found to have different values of displacement 
magnitudes, leading to van der Waals forces being generated which in turn affect the buckling of the 
graphenes.  

It is interesting to note that as the number of layer increases, critical load decreases but it varies 
within the bounds provided by the case of all edges clamped and the case of all edges simply-
supported, as shown in Figure 7. It is not difficult to see that as the layer increases, the overall 
effective support progressively approaches that of the case of all edges simply-supported and hence 
the critical load asymptotes its lower bound. These results vary considerably from those ideal cases 
of clamped and simply-supported for a typical given value of layer number L, demonstrating the 
practical significance and improved accuracy of the mixed boundary support approach. 
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Figure 6. Fundamental buckling mode with mixed boundary supports. 

 

Figure 7. Critical loads of a square MLGSs with mixed boundary supports. 

As expected, aspect ratios bear considerable effect on critical loads of MLGSs modelled with 
mixed boundary supports. These results are shown in Figure 8 in the case of uni-directional 
compressive loadings for a 5-layered and a 15-layered MLGSs. Similar to the case of a single 
layered graphene, a minimum  critical load is found when = 1 and increases with  for > 1 and 
decreases with  for < 1. However, the rates of increase or decrease become more moderate as 
compared with those of a single layer.  



74 

AIMS Materials Science                                                                 Volume 2, Issue 2, 61-78. 

 

Figure 8. Critical load versus aspect ratio of MLGSs (a = 10m, = 0). 

Another case of practical interest is the determination of critical buckling loads of MLGSs when 
subjected to dual directional compressive loadings. For a square MLGSs and a compressive loading 
ratio = 1, critical loads are computed with different number of layers up to 30 and the results are 
shown in Figure 9, together with comparisons with those ideal cases of all edges clamped and all 
edges simply-supported. Again, critical loads are observed to be much lower as compared with those 
of uni-directional loadings. 

 

Figure 9. Critical loads of a square MLGSs under dual-directional load (= 1). 

In the case of dual-directional loadings, it is also important to establish how critical loads vary 
with aspect ratios when buckling characteristics of MLGSs are examined. These critical loads are 
computed for the case of compressive loading ratio  = 1 and are shown in Figure 10. Similar 
characteristics to those of Figure 7 are observed except that for the case of dual-directional loadings, 
critical loads become much lower as illustrated in Figure 10.  
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Figure 10. Critical load versus aspect ratio of MLGSs (a = 10m, = 1). 

Based on the proposed numerical approach, the modelling of van der Waals interactions and the 
mixed boundary supports, extensive numerical simulations have been carried out to fully establish 
the buckling characteristics of single and multi-layered graphene sheets for various boundary 
conditions, aspect ratios, compressive loading ratios and number of layers. These results provide 
comprehensive and wholesome practically useful studies which can be used as potential structural 
design guideline when graphene sheets are deployed for various engineering applications where 
buckling strength becomes a major performance concern.  

In practice however, nano-structured materials such as graphene sheets are often subjected to 
thermal loading due to temperature fluctuations in their applications, these thermal effect on buckling 
behaviour is not considered here in the present paper, though with the availability of thermal 
characteristics such thermal expansion coefficient, thermal loading effect can be accordingly    
treated [41]. In addition, as compared with those results obtained from atomic modelling of single 
layered graphene sheet [42], quite similar conclusions have been reached. 

4. Conclusion 

Multi-layered graphene sheets are increasingly being deployed for innovative sensing and 
actuation applications which often require detailed knowledge about their buckling strengths. 
However, structural modelling of MLGSs becomes more complex since they are essentially 
assembled structural systems with inter-layer van der Waals bonding forces. In this paper, elastic 
buckling behaviour of multi-layered graphene sheets in the presence of van der Waals bonding forces 
has been systematically and successfully investigated using generalized differential quadrature 
(GDQ). Van der Waal forces have been modelled, to a first order approximation, as linear physical 
springs which connect the nodes between the layers. Critical buckling loads and their associated 
modes have been established and analyzed under different boundary conditions, aspect ratios and 
compressive loading ratios in the case of graphene sheets compressed in two perpendicular directions. 
Various practically possible loading configurations have been examined and their effect on buckling 
characteristics has been assessed. To model more accurately the buckling behaviour of multi-layered 
graphene sheets, a physically more representative and realistic mixed boundary support concept has 
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been proposed and applied. For the fundamental buckling mode under mixed boundary support, the 
layers with different boundary supports deform similarly but non-identically, leading to resultant van 
der Waals bonding forces between the layers which in turn affect the critical buckling load. Results 
have been compared with existing known solutions to illustrate the excellent accuracy of the 
proposed modelling approach. The buckling characteristics of graphene sheets presented in this 
paper form a comprehensive and wholesome study which can be used as potential structural design 
guideline when graphene sheets are employed for nano-scale sensing and actuation applications such 
as nano-electro-mechanical systems (NEMS). The excellent accuracy and the general capability of 
the proposed approach have demonstrated its great potential for being used in general structural 
analysis of wide range of nano-structural systems.  
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