[1]
|
Hoskin BF, Robson R (1990) Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4∙xC6H5NO2. J Am Chem Soc 112: 1546–1554.
|
[2]
|
Batten SR, Champness NR, Chen XM, et al. (2013) Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl Chem 85: 1715–1724. doi: 10.1351/PAC-REC-12-11-20
|
[3]
|
Furukawa H, Cordova KE, O'Keeffe M, et al. (2013) The chemistry and applications of metal-organic frameworks. Science 341: 1230444. doi: 10.1126/science.1230444
|
[4]
|
Adhikari AK, Lin KS, Tu MT (2016) Hydrogen storage capacity enhancement of MIL-53(Cr) by Pd loaded activated carbon doping. J Taiwan Inst Chem E 63: 463–472. doi: 10.1016/j.jtice.2016.02.033
|
[5]
|
Rodenas T, Luz I, Prieto G, et al. (2015) Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 14: 48–55. doi: 10.1038/nmat4113
|
[6]
|
Ma J, Guo X, Ying Y, et al. (2017) Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance. Chem Eng J 313: 890–910. doi: 10.1016/j.cej.2016.10.127
|
[7]
|
Timofeeva MN, Panchenko VN, Khan NA, et al. (2017) Isostructural metal-carboxylates MIL-100(M) and MIL-53(M) (M: V, Al, Fe and Cr) as catalysts for condensation of glycerol with acetone. Appl Catal A-Gen 529: 167–174. doi: 10.1016/j.apcata.2016.11.006
|
[8]
|
Loera-Serna S, Ortiz E (2016) Catalytic Applications of Metal-Organic Frameworks, in: Luis N, Advanced Catalytic Materials-Photocatalysis and Other Current Trends, IntechOpen, 95–122.
|
[9]
|
Ji L, Cheng Q, Wu K, et al. (2016) Cu-BTC frameworks-based electrochemical sensing platform for rapid and simple determination of sunset yellow and tartrazine. Sensor Actuat B-Chem 231: 12–17. doi: 10.1016/j.snb.2016.03.012
|
[10]
|
Da Silva CTP, Veregue FR, Aguiar LW, et al. (2016) AuNp@MOF composite as electrochemical material for determination of bisphenol A and its oxidation behavior study. New J Chem 40: 8872–8877. doi: 10.1039/C6NJ00936K
|
[11]
|
Yi FY, Zhang R, Wang H, et al. (2017) Metal-organic frameworks and their composites: Synthesis and electrochemical applications. Small Methods 1: 1–24.
|
[12]
|
Ebrahimi AK, Sheikhshoaie I, Mehran M (2017) Facile synthesis of a new metal-organic framework of copper(II) by interface reaction method, characterization, and its application for removal of malachite green. J Mol Liq 240: 803–809. doi: 10.1016/j.molliq.2017.06.097
|
[13]
|
Safarifard V, Morsali A (2018) Facile preparation of nanocubes zinc-based metal-organic framework by an ultrasound-assisted synthesis method; precursor for the fabrication of zinc oxide octahedral nanostructures. Ultrason Sonochem 40: 921–928. doi: 10.1016/j.ultsonch.2017.09.014
|
[14]
|
Kowalewski E, Zienkiewicz-Machnik M, Lisovytskiy D (2017) Turbostratic carbon supported palladium as an efficient catalyst for reductive purification of water from trichloroethylene. AIMS Mater Sci 4: 1276–1288. doi: 10.3934/matersci.2017.6.1276
|
[15]
|
Kim DW, Kim HG, Cho DH (2016) Catalytic performance of MIL-100(Fe, Cr) and MIL-101(Fe, Cr) in the isomerization of endo- to exo-dicyclopentadiene. Catal Commun 73: 69–73. doi: 10.1016/j.catcom.2015.10.006
|
[16]
|
Xu B, Li X, Chen Z (2018) Pd@MIL-100(Fe) composite nanoparticles as efficient catalyst for reduction of 2/3/4-nitrophenol: Synergistic effect between Pd and MIL-100(Fe). Micropor Mesopor Mater 255: 1–6. doi: 10.1016/j.micromeso.2017.07.008
|
[17]
|
Horcajada P, Surble S, Serre C, et al. (2007) Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem Commun 100: 2820–2822.
|
[18]
|
Silva P, Vilela SMF, Tome JPC, et al. (2015) Multifunctional metal-organic frameworks: from academia to industrial applications. Chem Soc Rev 44: 6774–6803. doi: 10.1039/C5CS00307E
|
[19]
|
Tan F, Liu M, Li K, et al. (2015) Facile synthesis of size-controlled MIL-100(Fe) with excellent adsorption capacity for methylene blue. Chem Eng J 281: 360–367. doi: 10.1016/j.cej.2015.06.044
|
[20]
|
Zhang F, Shi J, Jin Y, et al. (2015) Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chem Eng J 259: 183–190. doi: 10.1016/j.cej.2014.07.119
|
[21]
|
Duan S, Li J, Liu X, et al. (2016) HF-Free synthesis of nanoscale metal-organic framework NMIL-100(Fe) as an efficient dye adsorbent. ACS Sustain Chem Eng 4: 3368–3378. doi: 10.1021/acssuschemeng.6b00434
|
[22]
|
Márquez AG, Demessence A, Platero-Prats AE, et al. (2012) Green Microwave synthesis of MIL-100(Al, Cr, Fe) nanoparticles for thin-film elaboration. Eur J Inorg Chem 100: 5165–5174.
|
[23]
|
Zukal A, Opanasenko M, Rubes M, et al. (2015) Adsorption of pentane isomers on metal-organic frameworks Cu-BTC and Fe-BTC. Catal Today 243: 69–75. doi: 10.1016/j.cattod.2014.07.003
|
[24]
|
Yaghi OM, Li H, Groy TL (1996) Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-tricarboxylic acid. J Am Chem Soc 118: 9096–9101. doi: 10.1021/ja960746q
|
[25]
|
Khan NA, Haque MM, Jhung SH (2010) Accelerated syntheses of porous isostructural lanthanide-benzenetricarboxylates (Ln-BTC) under ultrasound at room temperature. Eur J Inorg Chem 2: 4975–4981.
|
[26]
|
Singco B, Liu LH, Chen YT, et al. (2016) Approaches to drug delivery: Confinement of aspirin in MIL-100(Fe) and aspirin in the de novo synthesis of metal-organic frameworks. Micropor Mesopor Mater 223: 254–260. doi: 10.1016/j.micromeso.2015.08.017
|
[27]
|
Schlesinger M, Schulze S, Hietschold M, et al. (2010) Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Micropor Mesopor Mater 132: 121–127. doi: 10.1016/j.micromeso.2010.02.008
|
[28]
|
Israr F, Kim DK, Kim Y, et al. (2016) Synthesis of porous Cu-BTC with ultrasonic treatment: Effects of ultrasonic power and solvent condition. Ultrason Sonochem 29: 186–193. doi: 10.1016/j.ultsonch.2015.08.023
|
[29]
|
Lanchas M, Arcediano S, Aguayo AT, et al. (2014) Two appealing alternatives for MOFs synthesis: solvent-free oven heating vs. microwave heating. RSC Adv 4: 60409–60412.
|
[30]
|
Da Silva CTP, Safadi BN, Moisés MP, et al. (2016) Synthesis of Zn-BTC metal organic framework assisted by a home microwave oven and their unusual morphologies. Mater Lett 182: 231–234. doi: 10.1016/j.matlet.2016.06.015
|
[31]
|
Howarth AJ, Peters AW, Vermeulen NA, et al. (2017) Best practices for the synthesis, activation, and characterization of metal-organic frameworks. Chem Mater 29: 26–39. doi: 10.1021/acs.chemmater.6b02626
|
[32]
|
Sun Y, Zhou HC (2015) Recent progress in the synthesis of metal-organic frameworks. Sci Technol Adv Mat 16: 1–11.
|
[33]
|
Israr F, Chun D, Kim Y, et al. (2016) High yield synthesis of Ni-BTC metal-organic framework with ultrasonic irradiation: Role of polar aprotic DMF solvent. Ultrason Sonochem 31: 93–101. doi: 10.1016/j.ultsonch.2015.12.007
|
[34]
|
Tan H, Liu C, Yan Y, et al. (2015) Simple preparation of crystal Co3(BTC)2·12H2O and its catalytic activity in CO oxidation reaction. J Wuhan Univ Technol 3: 71–75.
|
[35]
|
Israr F, Kim DK, Kim Y, et al. (2016) Scope of various solvents and their effects on solvothermal synthesis of Ni-BTC. Quim Nova 39: 669–675.
|
[36]
|
Shamaei S, Abbasi AR, Noori N, et al. (2013) Ultrasound-assisted coating of silk yarn with nano-porous Co3(BTC)2·12H2O with iodine adsorption affinity. Colloid Surface A 431: 66–72.
|