Citation: Harold O. Lee III, Sam-Shajing Sun. Properties and mechanisms of iodine doped of P3HT and P3HT/PCBM composites[J]. AIMS Materials Science, 2018, 5(3): 479-493. doi: 10.3934/matersci.2018.3.479
[1] | Sun SS, Dalton LR (2016) Introduction to Organic Electronic and Optoelectronic Materials and Dev ices , 2 Eds, Boca Raton: CRC Press/Taylor & Francis. |
[2] | Li Y, Hou J (2016) Major Classes of Conjugated Polymers and Synthetic Strategies, In: Sun SS, Dalton LR, Introduction to Organic Electronic and Optoelectronic Materials and Devices , 2 Eds, Boca Raton: CRC Press/Taylor & Francis, 190–194. |
[3] | Chiang CK, Fincher Jr CR, Park YW, et al. (1977) Electrical Conductivity in Doped Polyacetylene. Phys Rev Lett 39: 1098–1101. doi: 10.1103/PhysRevLett.39.1098 |
[4] | Sun SS (2016) Basic Electronic Structures and Charge Carrier Generation in Organic Optoelectronic Materials, In: Sun SS, Dalton LR, Introduction to Organic Electronic and Optoelectronic Materials and Devices , 2 Eds, Boca Raton: CRC Press/Taylor & Francis, 77–87. |
[5] | Sun SS, Sariciftci NS (2005) Organic Photovoltaics: Mechanisms, Materials, and Devices , Boca Raton: CRC Press/Taylor & Francis. |
[6] | Komarudin D, Morita A, Osakada K, et al. (1988) Iodine Doping of Poly(thiophene-2,5-diyl) and poly(3-Alkylthiophene-2,5-Diyl)s in Aqueous Media. Polym J 30: 860–862. |
[7] | Tian P, Tang L, Xiang J, et al. (2016) Solution Processable High-Performance Infrared Organic Photodetector by Iodine Doping. RSC Adv 6: 45166–45171. doi: 10.1039/C6RA02773C |
[8] | Li G, Shrotriya V, Huang JS, et al. (2006) Polymer Self-Organization Enhances Photovoltaic Efficiency. SPIE Newsroom . Available from: http://spie.org/newsroom/0147-polymer-self- organization-enhances-photovoltaic-efficiency?ArticleID=x8808. |
[9] | Winokur MJ, Wamsley P, Moulton J, et al. (1991) Structural evolution in iodine-doped poly(3-alkylthiophenes). Macromolecules 24: 3812–3815. doi: 10.1021/ma00013a011 |
[10] | Gao J, Niles ET, Grey JK (2013) Aggregates Promote Efficient Charge Transfer Doping of Poly(3-Hexylthiophene). J Phys Chem Lett 4: 2953–2957. doi: 10.1021/jz401555x |
[11] | Gao J, Roehling JD, Li Y, et al. (2013) The Effect of 2,3,5,6-Tetrafluoro-7,7,8,8-Tetracyanoquinodimethane Charge Transfer Dopants on the Conformation and Aggregation of poly(3-Hexylthiophene). J Mater Chem C 1: 5638–5646. doi: 10.1039/c3tc31047g |
[12] | Lim E, Peterson KA, Su GM, et al. (2018) Thermoelectric Properties of Poly(3-hexylthiophene) (P3HT) Doped with 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) by Vapor-Phase Infiltration. Chem Mater 30: 998–1010. doi: 10.1021/acs.chemmater.7b04849 |
[13] | Enengl C, Enengl S, Pluczyk S, et al. (2016) Doping-Induced Absorption Bands in P3HT:Polarons and Bipolarons. ChemPhysChem 17: 3836–3844. doi: 10.1002/cphc.201600961 |
[14] | Salzmann I, Heimel G, Oehzelt M, et al. (2016) Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules. Accounts Chem Res 49: 370–378. doi: 10.1021/acs.accounts.5b00438 |
[15] | Li P, Chen LJ, Pan J, et al. (2014) Dispersion of P3HT gelation and its influence on the performance of bulk heterojunction organic solar cells based on P3HT:PCBM. Sol Energ Mat Sol C 125: 96–101. doi: 10.1016/j.solmat.2014.03.004 |
[16] | Lüssem B, Riede M, Leo K (2013) Doping of Organic Semiconductors. Phys Status Solidi A 210: 9–43. doi: 10.1002/pssa.201228310 |
[17] | Chen TA, Wu X, Rieke RD (1995) Regiocontrolled Synthesis of Poly(3-Alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties. J Am Chem Soc 117: 233–244. doi: 10.1021/ja00106a027 |
[18] | Liao HC, Hsu CP, Wu MC, et al. (2013) Conjugated Polymer/nanoparticles Nanocomposites for High Efficient and Real-Time Volatile Organic Compounds Sensors. Anal Chem 85: 9305–9311. doi: 10.1021/ac402052h |
[19] | Baghgar M, Barnes MD (2015) Work Function Modification in P3HT H/J Aggregate Nanostructures Revealed by Kelvin Probe Force Microscopy and Photoluminescence Imaging. ACS Nano 9: 7105–7112. doi: 10.1021/acsnano.5b03422 |
[20] | Brown PJ, Thomas DS, Köhler A, et al. (2003) Effect of Interchain Interactions on the Absorption and Emission of poly(3-Hexylthiophene). Phys Rev B 67: 64203. doi: 10.1103/PhysRevB.67.064203 |
[21] | Endrodi B, Mellár J, Gingl Z, et al. (2015) Molecular and Supramolecular Parameters Dictating the Thermoelectric Performance of Conducting Polymers: A Case Study Using poly(3-Alkylthiophene)s. J Phys Chem C 119: 8472–8479. doi: 10.1021/acs.jpcc.5b00135 |
[22] | Ehrenreich P, Birkhold ST, Zimmermann E, et al. (2016) H-Aggregate Analysis of P3HT Thin Films-Capability and Limitation of Photoluminescence and UV/Vis Spectroscopy. Sci Rep 6: 32434. doi: 10.1038/srep32434 |
[23] | Clark J, Chang JF, Spano FC, et al. (2009) Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl Phys Lett 94: 163306. doi: 10.1063/1.3110904 |
[24] | Tashiro K, Kobayashi M, Kawai T, et al. (1997) Crystal structural change in poly(3-alkyl thiophene)s induced by iodine doping as studied by an organized combination of X-ray diffraction, Infrared/Raman spectroscopy and computer simulation techniques. Polymer 38: 2867–2879. doi: 10.1016/S0032-3861(96)00876-2 |
[25] | Zhuo Z, Zhang F, Wang J, et al. (2011) Efficiency Improvement of Polymer Solar Cells by Iodine Doping. Solid State Electron 63: 83–88. |