Citation: Jean-Louis Bretonnet. Basics of the density functional theory[J]. AIMS Materials Science, 2017, 4(6): 1372-1405. doi: 10.3934/matersci.2017.6.1372
[1] | Hartree DR (1928) The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24: 89–110. doi: 10.1017/S0305004100011919 |
[2] | Fock V (1930) Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z Physik 61: 126–148. doi: 10.1007/BF01340294 |
[3] | Slater JC (1930) Note on Hartree's Method. Phys Rev 35: 210–211. |
[4] | Raimes S (1967) The Wave Mechanics of Electrons in Metals, Amsterdam: North-Holland. |
[5] | Thomas LH (1927) The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society, 23: 542–548. doi: 10.1017/S0305004100011683 |
[6] | Fermi E (1928) Eine Statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z Physik 48: 73–79. doi: 10.1007/BF01351576 |
[7] | Dirac PAM (1930) Note on Exchange Phenomena in the Thomas Atom. Mathematical Proceedings of the Cambridge Philosophical Society, 26: 376–385. doi: 10.1017/S0305004100016108 |
[8] | Hohenberg P, Kohn W (1964) Inhomogeneous Electron Gas. Phys Rev 136: B864–B871. doi: 10.1103/PhysRev.136.B864 |
[9] | Kohn W, Sham LJ (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev 140: A1133–A1138. doi: 10.1103/PhysRev.140.A1133 |
[10] | Becke AD (1996) Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104: 1040–1046. |
[11] | Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38: 3098–3100. doi: 10.1103/PhysRevA.38.3098 |
[12] | Lee C, YangW, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37: 785–789. doi: 10.1103/PhysRevB.37.785 |
[13] | Feynman RP, Metropolis N, Teller E (1949) Equations of State of Elements Based on the Generalized Fermi-Thomas Theory. Phys Rev 75: 1561–1573. doi: 10.1103/PhysRev.75.1561 |
[14] | Schwinger J (1981) Thomas-Fermi model: the second correction. Phys Rev A 24: 2353–2361. doi: 10.1103/PhysRevA.24.2353 |
[15] | Shakeshalf R, Spruch L (1981) Remarks on the existence and accuracy of the Z-1/3 expansion of the nonrelativistic ground-state energy of a neutral atom. Phys Rev A 23: 2118–2126. doi: 10.1103/PhysRevA.23.2118 |
[16] | Englert BG, Schwinger J (1985) Atomic-binding-energy oscollations. Phys Rev A 32: 47–63. doi: 10.1103/PhysRevA.32.47 |
[17] | Spruch L (1991) Pedagogic notes on Thomas-Fermi theory (and on some improvements): atoms, stars, and the stability of bulk matter. Rev Mod Phys 63: 151–209. doi: 10.1103/RevModPhys.63.151 |
[18] | Mermin ND (1965) Thermal Properties of the Inhomogeneous Electron Gas. Phys Rev 137: A1441–A1443. (Concerns the generalization to electrons at finite temperatures). doi: 10.1103/PhysRev.137.A1441 |
[19] | Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci U S A 76: 6062–6065. doi: 10.1073/pnas.76.12.6062 |
[20] | Becke AD (2014) Perspective: Fifty years of density-functional theory in chemical physics. J Chem Phys 140: 18A301. |
[21] | Lindhard J (1954) On the properties of a gas of charged particles. Kgl Danske Videnskab Selskab Mat Fys Medd 28: 8. |
[22] | Jones RO, Young WH (1971) Density functional theory and the vonWeizsacker method. J Phys C 4: 1322–1330. doi: 10.1088/0022-3719/4/11/007 |
[23] | von Weizsäcker CF (1935) Zur Theorie der Kernmassen. Z Physik 96: 431–458 . doi: 10.1007/BF01337700 |
[24] | Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61: 689–746. doi: 10.1103/RevModPhys.61.689 |
[25] | Slater JC (1951) A Simplification of the Hartree-Fock Method. Phys Rev 81: 385–390. doi: 10.1103/PhysRev.81.385 |
[26] | Robinson JE, Bassani F, Knox BS, et al. (1962) Screening Correction to the Slater Exchange Potential. Phys Rev Lett 9: 215–217. doi: 10.1103/PhysRevLett.9.215 |
[27] | Wigner EP (1934) On the Interaction of Electrons in Metals. Phys Rev 46: 1002–1011. doi: 10.1103/PhysRev.46.1002 |
[28] | Gell-Mann M, Brueckner K (1957) Correlation Energy of an Electron Gas at High Density. Phys Rev 106: 364–368. doi: 10.1103/PhysRev.106.364 |
[29] | Ceperley DM (1978) Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions. Phys Rev B 18: 3126–3138. doi: 10.1103/PhysRevB.18.3126 |
[30] | Ceperley DM, Alder BJ (1980) Ground State of the Electron Gas by a Stochastic Method. Phys Rev Lett 45: 566–569. doi: 10.1103/PhysRevLett.45.566 |
[31] | Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45: 13244–13249. doi: 10.1103/PhysRevB.45.13244 |
[32] | Levy M (1982) Electron densities in search of Hamiltonians. Phys Rev A 26: 1200–1208. doi: 10.1103/PhysRevA.26.1200 |
[33] | Lieb EH (1983) Density functionals for coulomb-systems. Int J Quantum Chem 24: 243–277. doi: 10.1002/qua.560240302 |
[34] | Levy M, Perdew JP (1985) Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms. Phys Rev A 32: 2010–2021. |
[35] | Wigner E, Seitz F (1933) On the Constitution of Metallic Sodium. Phys Rev 43: 804–810. doi: 10.1103/PhysRev.43.804 |
[36] | Hellmann H (1933) Zur Rolle der kinetischen Elektronenenergie für die zwischenatomaren Kräfte. Z Physik 85: 180–190. doi: 10.1007/BF01342053 |
[37] | Feynman RP (1939) Forces in Molecules. Phys Rev 56: 340–343. doi: 10.1103/PhysRev.56.340 |
[38] | Pupyshev VI (2000) The Nontriviality of the Hellmann-Feyman Theorem. Russ J Phys Chem 74: S267–S278. |
[39] | Perdew JP, Kurth S (2003) Density Functionals for Non-relativistic Coulomb Systems in the New Century, In: Fiolhais C, Nogueira F, Marques MAL, A Primer in Density Functional Theory, Berlin Heidelberg: Springer-Verlag, 1–55. |
[40] | Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys Rev B 13: 4274–4298; Gunnarsson O, Lundqvist BI (1977) Erratum: Exchange and correlation in atoms, molecules, and solids by the spin-densityfunctional formalism. Phys Rev B 15: 6006. doi: 10.1103/PhysRevB.13.4274 |
[41] | Gunnarsson O, Jonson M, Lundqvist BI (1979) Descriptions of exchange and correlation effects in inhomogeneous electron systems. Phys Rev 20: 3136–3165. doi: 10.1103/PhysRevB.20.3136 |
[42] | Langreth DC, Perdew JP (1975) The Exchange-Correlation Energy of a Metallic Surface. Solid State Commun 17: 1425–1429. doi: 10.1016/0038-1098(75)90618-3 |
[43] | Langreth DC, Perdew JP (1977) Exchange-correlation energy of a metallic surface: Wave-vector analysis. Phys Rev B 15: 2884–2901. doi: 10.1103/PhysRevB.15.2884 |
[44] | Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61: 689–746. doi: 10.1103/RevModPhys.61.689 |
[45] | Charlesworth JPA (1996) Weighted-density approximation in metals and semiconductors. Phys Rev B 53: 12666–12673. doi: 10.1103/PhysRevB.53.12666 |
[46] | Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys Rev B 13: 4274–4298. doi: 10.1103/PhysRevB.13.4274 |
[47] | Alvarellos JE, Chacon E, Tarazona P (1986) Nonlocal density functional for the exchange and correlation energy of electrons. Phys Rev 33: 6579–6587. doi: 10.1103/PhysRevB.33.6579 |
[48] | Chacon E, Tarazona P (1988) Self-consistent weighted-density approximation for the electron gas. I. Bulk properties. Phys Rev 37: 4020–4025. |
[49] | Gupta AK, Singwi KS (1977) Gradient corrections to the exchange-correlation energy of electrons at metal surfaces. Phys Rev B 15: 1801–1810. |
[50] | Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77: 3865–3868. doi: 10.1103/PhysRevLett.77.3865 |
[51] | Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchangecorrelation hole of a many-electron system. Phys Rev B 54: 16533–16539. doi: 10.1103/PhysRevB.54.16533 |
[52] | Perdew JP, Ruzsinszky A, Csonka GI, et al. (2008) Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys Rev Lett 100: 136406. (Modified PBE subroutines are available from: http://dft.uci.edu./pubs/PBEsol.html.) doi: 10.1103/PhysRevLett.100.136406 |
[53] | Colle R, Salvetti O (1975) Approximate calculation of the correlation energy for the closed shells. Theoret Chim Acta 37: 329–334. doi: 10.1007/BF01028401 |
[54] | Leung TC, Chan CT, Harmon BN (1991) Ground-state properties of Fe, Co, Ni, and their monoxides: Results of the generalized gradient approximation. Phys Rev B 44: 2923–2927. doi: 10.1103/PhysRevB.44.2923 |
[55] | Singh DJ, Ashkenazi J (1992) Magnetism with generalized-gradient-approximation density functionals. Phys Rev B 46: 11570–11577. doi: 10.1103/PhysRevB.46.11570 |
[56] | Körling M, Häglund J (1992) Cohesive and electronic properties of transition metals: The generalized gradient approximation. Phys Rev B 45: 13293–13297. doi: 10.1103/PhysRevB.45.13293 |
[57] | Engel E, Vosko SH (1994) Fourth-order gradient corrections to the exchange-only energy functional: Importance of r2n contribution. Phys Rev B 50: 10498–10505. doi: 10.1103/PhysRevB.50.10498 |
[58] | Andersson Y, Langreth DC, Lundqvist BI (1996) van derWaals Interactions in Density-Functional Theory. Phys Rev Lett 76: 102–105. doi: 10.1103/PhysRevLett.76.102 |
[59] | Dobson JF, Dinte BP (1996) Constraint Satisfaction in Local and Gradient Susceptibility Approximations: Application to a van der Waals Density Functional. Phys Rev Lett 76: 1780–1783. doi: 10.1103/PhysRevLett.76.1780 |
[60] | Patton DC, PedersonMR (1997) Application of the generalized-gradient approximation to rare-gas dimers. Phys Rev A 56: R2495–R2498. doi: 10.1103/PhysRevA.56.R2495 |
[61] | Van Voorhis T, Scuseria GE (1998) A novel form for the exchange-correlation energy functional. J Chem Phys 109: 400–410. doi: 10.1063/1.476577 |
[62] | Tao J, Perdew JP, Staroverov VN, et al. (2003) Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. Phys Rev Lett 91: 146401. doi: 10.1103/PhysRevLett.91.146401 |
[63] | Van Doren VE, Van Alsenoy K, Greelings P (2001) Density Functional Theory and Its Applications to Materials, Melville, NY: American Institute of Physics. |
[64] | Gonis A, Kioussis N (1999) Electron Correlations and Materials Properties, New York: Plenum. |
[65] | Perdew JP, Kurth S, Zupan A, et al. (1999) Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation. Phys Rev Lett 82: 2544– 2547; Perdew JP, Kurth S, Zupan A, et al. (1999) Erratum: Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation. Phys Rev Lett 82: 5179. doi: 10.1103/PhysRevLett.82.2544 |
[66] | Becke AD (2000) Simulation of delocalized exchange by local density functionals. J Chem Phys 112: 4020–4026. doi: 10.1063/1.480951 |
[67] | Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98: 1372–1377. doi: 10.1063/1.464304 |
[68] | Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98: 5648–5652. |
[69] | Seidl M, Perdew JP, Kurth S (2000) Simulation of All-Order Density-Functional Perturbation Theory, Using the Second Order and the Strong-Correlation Limit. Phys Rev Lett 84: 5070–5073. doi: 10.1103/PhysRevLett.84.5070 |
[70] | Fuchs M, Gonze X (2002) Accurate density functionals: Approaches using the adiabaticconnection fluctuation-dissipation theorem. Phys Rev B 65: 235109. doi: 10.1103/PhysRevB.65.235109 |
[71] | Seidl A, Görling A, Vogl P, et al. (1996) Generalized Kohn-Sham schemes and the band-gap problem. Phys Rev B 53: 3764–3774. doi: 10.1103/PhysRevB.53.3764 |
[72] | Savin A (1996) On degeneracy, near degeneracy and density functional theory, In: Seminario JM, Recent Developments of Modern Density Functional Theory, Amsterdam: Elsevier, 327–357. |
[73] | Sousa SF, Fernandes PA, Ramos MJ (2007) General Performance of Density Functionals. J Phys Chem A 111: 10439–10452. doi: 10.1021/jp0734474 |
[74] | Curtiss LA, Raghavachari K, Redfern PC, et al. (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106: 1063–1079. (This paper contains a set of 148 molecules having well-established enthalpies of formation at 298 K.) doi: 10.1063/1.473182 |
[75] | Chan GKL, Handy NC (1999) Optimized Lieb-Oxford bound for the exchange-correlation energy. Phys Rev A 59: 3075–3077. (As an example, the exchange-correlation energy must satisfy the inegality $\left| {{E_{xc}}} \right| \le 2.27\left| {E_x^{LDA}} \right|$ .) doi: 10.1103/PhysRevA.59.3075 |
[76] | Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105: 9982–9985. doi: 10.1063/1.472933 |
[77] | Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J Chem Phys 108: 664–675. doi: 10.1063/1.475428 |
[78] | Wu Q, Yang W (2002) Empirical correction to density functional theory for van der Waals interactions. J Chem Phys 116: 515–524. doi: 10.1063/1.1424928 |
[79] | Becke AD, Johnson ER (2005) Exchange-hole dipole moment and the dispersion interaction. J Chem Phys 122: 154104. doi: 10.1063/1.1884601 |
[80] | Tkatchenko A, Scheffler M (2009) Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys Rev Lett 102: 073005. doi: 10.1103/PhysRevLett.102.073005 |
[81] | Grimme S, Antony J, Ehrlich S, et al. (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132: 154104. doi: 10.1063/1.3382344 |
[82] | Dion M, Rydberg H, Schröder E, et al. (2004) Van der Waals Density Functional for General Geometries. Phys Rev Lett 92: 246401. doi: 10.1103/PhysRevLett.92.246401 |
[83] | Thonhauser T, Cooper VR, Li S, et al. (2007) Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond. Phys Rev B 76: 125112 . doi: 10.1103/PhysRevB.76.125112 |
[84] | Klimes J, Michaelides A (2012) Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. J Chem Phys 137: 120901. doi: 10.1063/1.4754130 |
[85] | Car R, Parrinello M (1985) Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys Rev Lett 55: 2471–2474. doi: 10.1103/PhysRevLett.55.2471 |
[86] | Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118: 8207–8215. doi: 10.1063/1.1564060 |
[87] | Heyd J, Scuseria GE (2004) Effcient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J Chem Phys 121: 1187–1192. doi: 10.1063/1.1760074 |
[88] | Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew–Burke–Ernzerhof exchangecorrelation functional. J Chem Phys 110: 5029–5036. doi: 10.1063/1.478401 |
[89] | Paier J, Marsman M, Kresse G (2007) Why does the B3LYP hybrid functional fail for metals? J Chem Phys 127: 024103. doi: 10.1063/1.2747249 |
[90] | Burke K (2012) Perspective on density functional theory. J Chem Phys 136: 150901. doi: 10.1063/1.4704546 |
[91] | Jones RO (2015) Density functional theory: Its origins, rise to prominence, and future. Rev Mod Phys 87: 897–923. doi: 10.1103/RevModPhys.87.897 |