Citation: Mrinalini Tiwari, Suhel Parvez, Paban K Agrawala. Role of some epigenetic factors in DNA damage response pathway[J]. AIMS Genetics, 2017, 4(1): 69-83. doi: 10.3934/genet.2017.1.69
[1] | Giglia-Mari G, Zotter A, Vermeulen W (2011) DNA Damage Response. Cold Spring Harb Perspect Biol 3: a000745. |
[2] | Hoeijmakers JHJ (2009) DNA Damage, Aging, and Cancer. N Engl J Med 361: 1475-1485. doi: 10.1056/NEJMra0804615 |
[3] | Bakkenist CJ, Kastan MB (2004) Initiating cellular stress responses. Cell 118: 9-17. doi: 10.1016/j.cell.2004.06.023 |
[4] | Bartek J, Lukas C, Lukas J (2004) Checking on DNA damage in Sphase. Nat Rev Mol Cell Biol 5: 792-804. doi: 10.1038/nrm1493 |
[5] | Lukas J, Lukas C, Bartek J (2004) Mammalian cell cycle checkpoints:signalling pathways and their organization in space and time. DNA Repair (Amst) 3: 997-1007. doi: 10.1016/j.dnarep.2004.03.006 |
[6] | Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155-168. doi: 10.1038/nrc1011 |
[7] | Petrini JH, Stracker TH (2003) The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol 13: 458-462. doi: 10.1016/S0962-8924(03)00170-3 |
[8] | You Z, Chahwan C, Bailis J, et al. (2005) ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol 25: 5363-5379. doi: 10.1128/MCB.25.13.5363-5379.2005 |
[9] | Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499-506. doi: 10.1038/nature01368 |
[10] | Kozlov SV, Graham ME, Peng C, et al. (2006) Involvement of novel autophosphorylation sites in ATM activation. Embo J 25: 3504-3514. doi: 10.1038/sj.emboj.7601231 |
[11] | Bartek J, Lukas J (2007) DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19: 238-245. doi: 10.1016/j.ceb.2007.02.009 |
[12] | Farmer H, McCabe N, Lord CJ, et al. (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434: 917-921. doi: 10.1038/nature03445 |
[13] | Krokan HE, Bjoras M (2013) Base excision repair. Cold Spring Haeb Perspect Biol 5: a012583. |
[14] | de Boer J, Hoeijmakers JHJ (1999) Nucleotide excision repair and human syndromes. Carcinogenesis 21: 453-460. |
[15] | Masutani C, Suqasawa K, Yanaqisawa J, et al. (1994) Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J 13: 1831-1843. |
[16] | Watanabe T, Sukegawa J, Sukegawa I, et al. (1999) A 127-kDA Protein (UV-DDB) binds to the cytoplasmic domain of the Alzheimer's Amyloid precursor protein. J Neurochem 72: 549-556. doi: 10.1046/j.1471-4159.1999.0720549.x |
[17] | Nishi R, Alekseev S, Dinant C, et al. (2009) UV-DDB- dependent regulation of nucleotide excision repair kinetics in living cells. DNA Repair 8: 767-776. doi: 10.1016/j.dnarep.2009.02.004 |
[18] | Stevnsner T, Muftuoglu M, Aamann MD, et al. (2008) The role of Cockayne Syndrome group b (CSB) protein in base excision repair and aging. Mech Ageing dev 129: 441-448. doi: 10.1016/j.mad.2008.04.009 |
[19] | de Laat WL, Jaspers NGJ, Hoeijmakers JHJ (1999) Molecular mechanism of nucleotide excision repair. Genes Dev 13: 768-785. doi: 10.1101/gad.13.7.768 |
[20] | Sung P, Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7: 739–750. doi: 10.1038/nrm2008 |
[21] | Ma CJ, Gibb B, Kwon Y, et al. (2016) Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament. Nucleic acids res pii: gkw1125. |
[22] | Van Gent DC, Burg MVD (2007) Non-homologous end-joining, a sticky affair. Oncogene 26: 7731-7740. doi: 10.1038/sj.onc.1210871 |
[23] | Smerdon MJ (1991) DNA repair and the role of chromatin structure. Current Opinion in Cell Biology 3: 422-428. |
[24] | Rogakou EP, Pilch DR, Orr AH, et al. (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biolchem 273: 5858-5868. |
[25] | Stucki M, Jackson SP (2006) γH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosome. DNA Repair (Amst) 5: 534-543. doi: 10.1016/j.dnarep.2006.01.012 |
[26] | Bekker-Jensen S, Lukas C, Kitagawa R, et al. (2006) Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 173: 195-206. doi: 10.1083/jcb.200510130 |
[27] | Celeste A, Fernandez-Capetillo O, Kruhlak MJ, et al. (2003) Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biology 5: 675-679. doi: 10.1038/ncb1004 |
[28] | Iacovoni JS, Caron P, Lassadi I, et al. (2010) High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. EMBO J 29: 1446-1457. |
[29] | Xu Y, Ayrapetov MK, Xu C, et al. (2012) Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol Cell 48: 723-33. |
[30] | Celeste A, Petersen S, Romanienko PJ, et al. (2002) Genomic instability in mice lackinghistone H2AX. Science 296: 922-927. |
[31] | Shimada M, Niida H, Zineldeen DH, et al. (2008) Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell 132: 221-232. |
[32] | Ramanathan B, Smerdon MJ (1989) Enhanced DNA repair synthesis in hyperacetylated nucleosomes. J BiolChem 264: 11026-11034. |
[33] | Guo R, Chen J, Mitchell DL, et al. (2011) GCN5 and E2F1 stimulate nucleotide excision repair by promoting H3K9 acetylation at sites of damage. Nucleic acids res 39: 1390-1397. |
[34] | Luijsterburg M S, van Attikum H (2011) Chromatin and the DNA damage response: The cancer connection. Mol Oncol 5: 349-367. doi: 10.1016/j.molonc.2011.06.001 |
[35] | Jiang X, Ye Xu, Price BD (2010) Acetylation of H2AX on Lysine 36 plays a key role in the DNA double – strand break repair pathway. FEBS PRESS 584: 2926-2930. doi: 10.1016/j.febslet.2010.05.017 |
[36] | Ogiwara H, Ui A, Otsuka A, et al. (2011) Histone acetylation by CBP and p300 at double-strand sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors. Oncogene 30: 2135-2145. doi: 10.1038/onc.2010.592 |
[37] | Yamamoto T, Horikoshi M (1997) Novel Substrate specificity of the Histone Acetyltransferase Activity of HIV-1-Tat Interactive Protein Tip60. J Biol Chem 272: 30595-30598. doi: 10.1074/jbc.272.49.30595 |
[38] | Ikura T, Ogryzko VV, Grigoriev M, et al. (2000) Involvement of the TIP60 Histone Acetylase Complex in DNA Repair and Apoptosis. Cell 102: 463-473. doi: 10.1016/S0092-8674(00)00051-9 |
[39] | Doyon Y, Côté J (2004) The highly conserved and multifunctional NuA4 HAT complex. CurrOpin Genet Dev 14: 147-154. |
[40] | Kim YC, Gerlitz G, Furusawa T, et al. (2008) Activation of ATM depends on chromatin interactions occurring before induction of DNA damage. Nature Cell biology 11: 92-96. |
[41] | Bernard P, Maure JF, Partridge JF, et al. (2001) Requirement of heterochromatin for cohesion at centromeres. Science 294: 2539-2542. doi: 10.1126/science.1064027 |
[42] | Nonaka N, Kitajima T, Yokobayashi S, et al. (2002) Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat Cell Biol 4: 89-93. doi: 10.1038/ncb739 |
[43] | Partridge JF, Scott KS, Bannister AJ, et al. (2002) cis-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesion to an ectopic site. Curr Biol 12: 1652-1660. doi: 10.1016/S0960-9822(02)01177-6 |
[44] | Wysocki R, Javaheri A, Allard S, et al. (2005) Role of Dot1- dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol Cell Biol 25: 8430-8443. doi: 10.1128/MCB.25.19.8430-8443.2005 |
[45] | Giannattasio M, Lazzaro F, Plevani P, et al. (2005) The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1. J Biol Chem 280: 9879-9886. doi: 10.1074/jbc.M414453200 |
[46] | Faucher D, Wellinger RJ (2010) Methylated H3K4, a Transcription-Associated Histone Modification, Is Involved in the DNA Damage Response Pathway. Plos Genet 6: e1001082. doi: 10.1371/journal.pgen.1001082 |
[47] | Peña PV, Hom RA, Hung T, et al. (2008) Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor. J Mol Biol 380: 303-312. |
[48] | Sun Y, Xu Y, Roy K, et al. (2007) DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol Cell Biol 27: 8502-8509. doi: 10.1128/MCB.01382-07 |
[49] | Ayrapetov MK, Gursoy-Yuzugullu O, Xu C, et al. (2014) DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proc Natl Acad Sci USA 111: 9169-9174. doi: 10.1073/pnas.1403565111 |
[50] | Dulev S, Tkach J, Lin S, et al. (2014) SET8 methyltransfersae activity during the DNA double-strand break response is required for the recruitment of 53BP1. EMBO Rep 15: 1163-1174. |
[51] | Doil C, Mainland N, Bekker-Jensen S, et al. (2009) RNF 168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136: 435-446. doi: 10.1016/j.cell.2008.12.041 |
[52] | Huen MS, Grant R, Manke I, et al. (2007) RNF8 transduces the DNA-damage signal via histone ubiquitinylation and checkpoint protein assembly. Cell 131: 901-914. doi: 10.1016/j.cell.2007.09.041 |
[53] | Bergink S, Salomons FA, Hoogstraten D, et al. (2006) DNA damage triggers nucleotide excision repair dependent monoubiquitylation of histone H2A. Genes Dev 20: 1343-1352. doi: 10.1101/gad.373706 |
[54] | Moyal L, Lerenthal Y, Gana-Weisz M, et al. (2011) Requirement of ATM- dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol Cell 41: 529-542. doi: 10.1016/j.molcel.2011.02.015 |
[55] | Wang H, Zhai L, Xu J, et al. (2006) Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 22: 383-394. doi: 10.1016/j.molcel.2006.03.035 |
[56] | Katoch O, Dwarakanath BS, Agrawala PK (2013) HDAC inhibitors: application in oncology and beyond. HOAJ Biol 2: 2. |
[57] | Katoch O, Kumar A, Adhikari JS, et al. (2013) Sulforaphane mitigates genotoxicity induced by radiation and anticancer drugs in human lymphocytes. Mutat Res 758: 29-34. doi: 10.1016/j.mrgentox.2013.08.009 |
[58] | Katoch O, Khan GA, Dwarakanath BS, et al. (2012) Mitigation of hematopoietic radiation injury by diallyl sulfide. JEPTO 31: 357-365. |