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Abstract: Academic buildings in a typical university campus occupy 42% of the total space and are 
responsible for nearly 50 percent of the total energy use and carbon emissions of the campus. 
Forecasting of energy consumption in this energy intensive building category could help higher 
education institutions in taking energy saving initiatives and in revising their building operating 
strategies. Reliable predictive techniques does not only help in forecasting a building’ energy 
consumption, but also help in identifying a variety of factors affecting the energy consumption of 
that building. This study attempts to forecast and benchmark the daily electricity consumption of an 
academic building situated in London, United Kingdom using two different data-driven modeling 
techniques, i.e., Multiple Regression and Artificial Neural Network. Hourly dataset for the electricity 
consumption was available for the period 2007 to 2011 from the smart meter whereas hourly data of 
different factors such as ambient temperature, relative humidity, wind speed and solar radiation were 
downloaded from the website of environmental research group of Kings College London. The 
performances of the two predictive models have been critically analyzed by comparing their 
predicted consumption with a real dataset of the same building for the year 2012. A comparison 
shows that both Multiple Regression (MR) and Artificial Neural Network (ANN) perform reasonably 
well with a Mean Absolute Percentage Error (MAPE) of 3.34% and 2.44% for working days and 5.12% 



784 

AIMS Energy  Volume 8, Issue 5, 783–801. 

and 4.59% for non-working days respectively. ANN performs slightly better than MR. This energy 
consumption forecasting approach can easily be adapted for predicting energy use of similar 
buildings. 

Keywords: data-driven forecasting models; electricity consumption; academic buildings; ANN; MR 

 

1. Introduction  

Buildings are responsible for about 30–45% of the global energy demand and are the major 
energy consuming sector [1]. Academic buildings in a typical university campus in the United 
Kingdom occupy 42% of the total space and are responsible for nearly 50 percent of the total energy 
use and carbon emissions of the campus. Forecasting building energy consumption has gained a rapid 
momentum in recent years as it helps the facility managers in scheduling and controlling energy usage 
in the buildings [2]. It has also emerged as an essential approach for energy planning, management, 
and conservation [3]. Researchers [4–6] consider that energy consumption prediction is an effective 
and helpful technique in order to regulate buildings energy consumption. Nonetheless, because of the 
diverse nature and intricacy of buildings in addition to the uncertain climatic conditions, forecasting of 
energy utilization becomes more difficult [7]. According to Ziyo and Ravi [8], major focus (57%) of 
researchers has been on the prediction of electricity usage in the buildings.  

Energy consumption forecasting models could be classified into two main categories; (a) 
Engineering models and (b) Statistical models. Engineering models require comprehensive amount of 
building related data such as building materials, schedules, equipment, occupancy levels, etc. The 
engineering methods require application of physical principles in order to estimate the energy behavior 
of the complete building itself and or for its components and are highly complex [9]. 

Conversely, statistical models are constructed on the historical datasets of different variables and 
are therefore, classified as Data-Driven Models (DDM). This historical data could be obtained through 
a detailed energy audit of the building. Hence, the historical data is of great significance, the quantity 
and quality associated with it has a central role in constructing the statistical models. The DDM 
primarily governs analysis of a system especially finding relation between different state variables 
without mere dependency on physical behaviors as seen in previous case. The data-driven models are 
largely applied to predict energy usage of the building-structures of a large variety [10]. 

A range of energy consumption DDMs are available but these differ in complexity level, time 
consumption and ease to use. These techniques include; Artificial Neural Networks (ANN), Deep 
Neural Networks (DNN), Genetic Programming (GP), Genetic Algorithms (GA), and Multiple 
Regression (MR). Among these, DNN, GA and GP require huge amount of data for reliable results, 
Secondly, these three techniques are computationally expensive requiring a lot of time to regress a 
model [11]. On the other hand, ANN and MR are relatively two easier forecasting techniques which 
offer reliable results with minimum time consumption [12].  

Artificial Neural Networks have received inspiration from biological neural network and present 
a computational model which works on the principle same as of human brain [13]. In the beginning 
ANN could not get attention of the researchers due to complexity associated with its functionality. 
However, ANN proved its significance by the availability of high-performance computing it contains. 
In a recent study, ANN application for energy consumption prediction was 41% in a review of 
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prediction studies by Ahmad et al. [14]. ANN outperforms other techniques in solving input-output 
relationships for complex, multifaceted, non-linear quantities. It functions as an adaptive system that 
adapts the coming input and develops its structure according to the input it receives. The basic 
structure of ANN is composed of numerous neurons which are connected together in a specific and 
precised neural pattern. This pattern of neurons is further sub-divided into various layers. This division 
is very crucial in ANN as the number of layers define different architectures of ANN along with flow 
of data. The architectures are categorized as unsupervised (without training) and supervised (with 
training) ANN. Single layered and multi layered ANN are also among common known architectures of 
ANN. Figure 1 shows the simplified structure of ANN.  

 

Figure 1. A Simple structure of ANN. 

Interestingly, supervised ANN involves two-staged adaptive learning. These are training and 
testing stages. ANN follows the following steps during training. Training data is given as input to 
architecture, and random biases and weights for each neuron layer are calculated. The output of each 
neuron layer is calculated by an activation function and there is a sequential flow of output generated 
from one layer to next layer as its input. The final combined output obtained at the end of last layer is 
fed back to adjust deviations in biases and weights among intermediate layers in order to obtain the 
targeted output. Feedback mechanism is present in the ANN to match the required output with the 
finally generated output from the last layer of ANN. 

ℎ௜𝑥 ൌ  ଵ

ଵା௘
ష൬∑ ೢ೔ೣ೔

ೕ
శ್൰

                               (1) 

where 𝑥௜
௝ is the input with j variables, 𝑤௜ is weight and ℎ௜𝑥 is output at ith layer. In this research, the 

feedback process continuous until the output follows the maximum bounds. Over fitting problem is 
also resolved in this research using validation phase. The trained neural network is then tested with test 
data to get the accuracy metrics.  

Multiple Regression (MR) is a simple and a common approach in predicting buildings energy 
consumption. The percentage of prediction studies involving MR is 26%, second to ANN in a review 
of prediction studies by [14]. A general form of MR model is shown in Eq 2. 

𝛽 ൌ  𝛼଴ ൅ 𝑎ଵ𝑥ଵ ൅ 𝑎ଶ𝑥ଶ ൅ 𝑎ଷ𝑥ଷ ൅ ⋯ ⋯ ⋯ 𝑎௡𝑥௡                   (2) 

where β is the output or dependent variable, 𝑎௜ are the regression coefficients (i = 0, 1, 2….n), 𝑥௜ are 
the independent variables (i = 1, 2, 3 …n). 

The predictive power of a MR model is generally expressed in terms of Coefficient of 
Determination (R2). Its value lies between ‘0’ and ‘1’. A value of unity means there is a strong 
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relationship between output and input variables whereas value below 0.5 represents a weaker 
relationship between the dependent and the independent variables [15]. 

In last two decades, ANN and MR have been widely used for the buildings energy prediction. 
Martellotta et al. [16] used sigmoid hidden layered and linear output neurons based double layered 
feed-forward ANN model to predict the hourly energy use of domestic sector in Italy. They selected 15 
variables as input. Their results showed that ANN performed extremely well with very low relative 
errors, rarely exceeding a ±5% tolerance. Deb et al. [17] used ANN to estimate energy saving by 
HVAC system in 56 retrofitted organizational premises in Singapore. The hidden layer in their model 
was comprised of four neurons. The study included 14 variables as input to the ANN architecture. The 
model showed good results with MAPE and R2 values of 14.80% and 0.70 respectively. In a similar 
study, Ekici and Aksoy [18] applied ANN technique to forecast energy consumption of buildings in 
Turkey and found that ANN with 3.43% variation shows outstanding forecasting of the order of 94.8 
percent to 98.5 percent. Deb et al. [19] presented a study to predict energy consumption by cooling 
loads in three different academic buildings. This study was based on a two year data and ANN was 
applied to create a forecasting model. The investigation showed ANN performs outstanding with 
R2 > 0.94.  

Gul and Patidar [1] attempted to develop correlation of occupancy and electrical energy demand 
in academic building for period of January 2013 to May 2013 in UK. Their analysis presented 
interesting results showing the major electrical energy consumption is by building’s own management 
system instead of occupants’ activities. Kaytez et al. [5] compared energy usage prediction pattern of 
three distinct techniques viz, ANN, MR and support vector machine. The study was conducted in 
Turkey for a period from 1970 to 2009 using population, total installed capacity and generation as 
independent variables. Comparison showed that results obtained from ANN and MR deviated by 1.79% 
and 0.88% respectively as acquired by support vector machine. Park et al. [20] used ANN and MR to 
predict hourly performance of ground source heat pump in Korea in 2018. Comparison revealed that 
ANN offers 1.75% higher accuracy based on coefficient of variation of root mean squared error than 
the MR. Aranda et al. [21] developed MR models to forecast energy use of 55 banks in Spain. They found 
outstanding performance by the model in estimating the energy use of the branches. Bianco et al. [22] 
developed MR model to estimate electricity usage using historical gross domestic product (GDP), 
electricity consumption, population and GDP per capita in Italy for thirty-seven years (1970–2007). 
They found R2 values equal to 0.961, 0.990 and 0.981 for non-residential, residential and total 
consumption respectively. Bingchun et al. [23] established three different prediction models for 
forecasting energy consumption in China by the end of 2021. Their models included ANN, multi-variable 
linear regression, and support vector machine considering imports & exports, gross domestic product and 
population as independent variables. The predicted results showed 47% (2954.04–5618.67 MTOE) 
variations in energy consumption in 2021. Joseph et al. [24] studied the impact of different climates in 
forecasting energy usage using MR technique. They had used building load (shading coefficient, 
window to wall ratio, lightning), HVAC system (fresh air, set point temperature for summer and winter) 
and HVAC plant (Chiller COP, boiler efficiency) as the inputs. Their proposed MR model elaborated 
R2 ranging from 0.89 to 0.97 for very cold to moderate regions. Mohammad et al. [25] described the 
impact of building shape (rectangle, triangle, H, L, T and U shape) in forecasting the energy 
consumption along with climate impacts as done in [24] in US. They used DOE-2 and eQUEST 
softwares to simulate the buildings and performing R statistical analysis developed multi-linear 
regression model. The comparison of the simulated and the model predicted showed 95% 
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compatibility in the results with a difference of 5% in annual energy usage.  
In a series of studies by Amber et al. [2,15,26] performance capabilities of various techniques are 

thoroughly evaluated for energy consumption in academic and administrative buildings. In [15] 
authors evaluated prediction pattern of two different techniques; MR and genetic programming; and 
compared the obtained results for administrative structures of London South Bank University using 
data of 2007–2012. Counter comparison of predicted results with actual values for the year 2013 
confirmed the accuracy of the proposed models with 6% and 7% total absolute error for genetic 
programming and MR respectively. Forecasting competency of MR model for university sector energy 
usage was evaluated by Amber et al. [2]. They considered building type, ambient temperature, 
weekday index, solar radiation, wind speed and humidity as explanatory variables. They found 
building type, ambient temperature and weekday index had the most impact on sector’s energy usage. 
They concluded the study with 12% and 13% normalized root mean square error for administrative and 
academic portions in the sector. In another study by Amber et al. [26] investigated the performance 
capabilities of five different forecasting techniques namely ANN, MR genetic programming, support 
vector machine and deep neural network. These techniques were trained for five year data of various 
weather parameters with weekday index explaining working and non-working days. The results of this 
study revealed outstanding performance by ANN with 6% Mean Absolute Percentage Error followed 
by 8.5% by MR.  

There are many more studies [27–31] which have used ANN and MR for energy consumption 
prediction. These studies are summarized in Figure 2. It highlights the location, building type and error 
analysis for each study. It also indicates the technique used in these studies.  

 

Figure 2. Buildings energy consumption forecasting studies. 

This detailed literature review clearly shows that energy consumption forecasting is an important 
task for the energy management teams and a very limited literature has been published for the energy 
prediction of academic buildings category that takes into account various parameters. To fill this gap, 
this study aims to predict daily electricity consumption of an academic building using two forecasting 
techniques, i.e., ANN and MR based on the historical datasets. The rest of the paper is structured as 
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follows: Section 2 describes Materials and Methods, Section 3 gives Results and Discussion whereas 
conclusions are drawn in Section 4. 

2. Materials and method 

This section describes different methods for collecting dataset and building related information. 
Dataset of different variables such as building occupancy, temperature, relative humidity, solar 
radiation and wind speed, have been plotted to observe daily and monthly variance whereas 
building’s half-hourly electricity consumption data is transformed into hourly, daily and monthly 
consumption profiles. Different datasets cover a period 2007 to 2011 whereas dataset of 2012 is used 
for the validation of models. 

2.1. Site selection 

For the purpose of this study, an academic building called ‘Keyworth Centre’ situated in the 
Southwark campus of London South bank University (LSBU) is marked as the most suited. The 
accessibility of building’s electricity consumption data led to the selection of this building. 
University has a dedicated energy management team led by the energy manager. This team is 
responsible for observing, examining and evaluating energy usage data of the university buildings 
and to introduce energy efficiency by identifying energy saving opportunities, by installing 
renewable and clean energy technologies.  

2.1.1. Building description 

The Keyworth Centre was built in 2003 and is situated at the Southwark campus of London 
South Bank University in London, UK. The building has six floors covering a total Gross Internal 
Area (GIA) of 8,588 m² and mainly consists of lecture theatres, class rooms, offices and a cafeteria.  

 

Figure 3. A view of Keyworth Centre building. 
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Figure 3 shows a view of the Keyworth Centre (KWC) building. It operates between 7.30 am 
to 8 pm and closes at 10 pm every day. The building is a naturally ventilated building. Basement in 
the building has a Plant Room which houses six gas fired boilers (each of 160 kW) for providing 
space heating through radiators to all six floors. The building has two elevators found near the main 
reception for transportation to upper floor. Compact Fluorescent Lamps are used as lightning source 
in the complete building. Moreover, it has a single low voltage electricity connection. As per data 
collected from the office of the energy manager, the Keyworth Centre consumes nearly 7% of the 
total annual electricity consumption of London South Bank University. 

2.2. Electricity consumption data 

The building has a single low voltage electricity connection. Hourly electricity usage dataset 
was available for the period of five years (i.e., 2007–2011) from the office of the energy manager. 
This data is being measured via smart meters. This has been transformed into daily and monthly 
figures. All equipment is used day to day, only pumps heating is not used during summer.  

2.2.1. Hourly electricity consumption data 

Figure 4 shows average hourly electricity usage of Keyworth Centre for week days and 
weekends for each month of the year. It is apparent that the building has a consistent hourly demand 
of nearly 65 kW on the weekends throughout the year. As the building does not operate on weekends, 
yet it has the base load such as lighting which seems running all the time. With intelligent lighting 
controls, this unnecessary consumption could be minimized. In contrast the weekday load does vary 
with respect to time.  

Load starts increasing from 5 am when the Building Management System starts the boilers to 
maintain the buildings space heating system before the staff and students arrive. During period of 
moderate temperature i.e. spring months (February & March) and fall months (October & November) 
the load climbs to as high as 200 kW at 9 am and then remains nearly same until 4 pm after which it 
starts dropping until it drops back to the base load at 10 pm when the staff closes the building. 
During summer months, the peak load drops to 170 kW. This drop in peak load could be attributed to 
no space heating demand which means the boilers and pumps would not run. Because the space 
heating equipment not only include boiler but also heavy duty pumps and when there is no space 
heating requirements these pumps will not run. December and January have reduced electricity 
demand. This could be attributed to lower occupancy due to Christmas holidays. 
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Figure 4. Hourly electricity usage of Keyworth Centre building (y-axis shows kW). 

2.2.2. Daily electricity consumption data 

Figure 5 presents daily average electricity use of KWC building on working days (WD) for 
years 2007 to 2011. It is observed that average daily electricity usage during winter months could be 
as high as 400 Wh/m2 and drops to 300 Wh/m2 during summer months. 
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Figure 5. Electricity usage on working days. 

 

Figure 6. Electricity usage on non-working days. 

Similarly, Figure 6 presents daily electricity usage on non-working days (NWD) for different 
months of years 2007 to 2011. Electricity consumption remains in the range of 200 to 250 Wh/m2 
throughout the year. 

2.3. Weather parameters 

Weather factors such as temperature, humidity and wind speed directly affect a building’s energy 
consumption [32–34]. For the purpose of this study, data was online available from the website of 
environmental research group of Kings College London. 
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Figure 7. Monthly variation of weather parameters: (a) dry bulb temperature, (b) solar 
irradiance, (c) relative humidity, (d) wind speed. 

Figure 7 shows the monthly average profiles of four weather parameters, i.e., wind speed, relative 
humidity, solar irradiance and temperature for five years, i.e., 2007–2011 for London Region. 

It is apparent that average temperature during winter months remains below 10 ℃ whereas during 
summer months it remains between 15 ℃ to 20 ℃. Highest temperature is recorded during the month 
of July and August. Year 2010 was observed colder compared to other years. Solar irradiance is lower 
during winter months, i.e., less than 100 W/m2 whereas it is higher during summer months, i.e., >100 
W/m2 < 200 W/m2. Irradiance was observed higher during 2007 whereas 2011 saw minimum solar 
irradiance. Humidity is lower during summer months, i.e., <80% whereas during winter months, 
average humidity values ae above 80%. Wind speed remains fairly constant between 2 m/s to 3 m/s 
throughout the year and very less variability has been observed in its monthly average values. 

2.4. Building occupancy 

In numerous studies, building occupancy has been observed as one of the significant variables 
that directly affect a buildings energy consumption [1,35,36]. In this case, no data was available for the 
building occupancy. However, realizing the significance of this important factor and to investigate its 
effect on the buildings electricity consumption, ‘Weekday Index’ as proxy variable is introduced to 
distinguish high and low occupancy periods. The variable has a value of 1 for WD and 0 for NWD. 
Non-working days include weekends and holidays. Figure 8 shows the number of non-working days 
during different months for years 2007 to 2011. It is apparent that average number of NWD are eight 
which represent the weekends. December has the highest NWD number due to Christmas break. 

a b

c d



793 

AIMS Energy  Volume 8, Issue 5, 783–801. 

It is interesting to note that for the establishment of the study only SPSS software and a desktop 
computer is required. 

 

Figure 8. Number of non-working days. 

3. Results and discussion 

3.1. Results of multiple regression analysis 

Daily electricity consumption in Watt-Hours/Square meters (Wh/m2) is the dependent variable, 
′𝛽′ and was regressed on five independent variables;  
a) Week Day Index (WDI), ሺ𝑥ଵሻ 
b) Dry Bulb Temperature, (𝑥ଶሻ 
c) Solar Irradiance, (𝑥ଷሻ 
d) Relative Humidity, (𝑥ସሻ 
e) Wind Speed, (𝑥ହሻ 

In the preliminary analysis, it was observed that there is collinearity among Dry Bulb 
Temperature, Solar Irradiance and Relative Humidity. Therefore, the latter two variables were 
eliminated. Wind speed was found insignificant with a t-stat value of less than 1.96 and p-value > 0.05. 
Only two variables were found significant, i.e., WDI ሺ𝑥ଵሻ and Dry Bulb temperature (𝑥ଶሻ. The MR 
model displays a good predictive power with R = +0.79 and R2 = 0.62.  

Equation 3 presents the MR model to predict the electricity usage of Keyworth Centre. 

𝛽 ൌ 1572 ൅ 139.75𝑥ଵ െ 4.72𝑥ଶ                       (3) 

Using this equation, the daily electricity consumption was predicted for year 2012. Figure 9 
shows the distribution of residual plots. Mathematically, standardized residuals are represented as: 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 ൌ ௢௕௦௘௥௩௘ௗ ௖௢௨௡௧ି௘௫௣௘௖௧௘ௗ ௖௢௨௡௧

ඥ௘௫௣௘௖௧௘ௗ௖௢௨௡௧
             (4) 

It is apparent that the residuals are split into two clusters. These two clusters represent two distinct 
types of days, i.e., working and non-working days. It is also clear that the distribution of residual is 
almost symmetric about the reference line, which shows the suitability of MR model. The scatter plot 
of forecasted and real electricity usage is shown in Figure 10. Again, the two clusters for working and 
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non-working days have appeared here. The MR model predicts daily electricity consumption with a 
Mean Relative Error (MRE) of 4.59% for working days and 2.81% for non-working days. 

 

Figure 9. Residual plots for regression predicted values.  

 

Figure 10. Scatter plot of actual and MR model predicted values. 
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3.2. Results of artificial neural network 

In this study, 70% data has been used for training the model whereas 30% is used for its testing. A 
sigmoid activation function has been applied which bounds the output values in the range from 0 to 1. 
The study also includes a double layered feed-forward architecture along with linear output layers and 
sigmoid hidden layers. Two hidden layers with 50 neurons have been used as shown in Figure 11. 

The plot of residuals is shown in Figure 12. Mathematically, residuals are given as: 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 ൌ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 െ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒                 (5) 

Residuals for WD and NWD are plotted against the predicted value. It is apparent that the 
distribution of residuals is not exactly symmetrical around the reference line. The residuals are within a 
range of −100 to 100 Wh/m2 with few outliers. 

Figure 13 shows a scattered plot between actual and ANN predicted daily electricity consumption. 
It can be seen that data is split into two clusters. A careful analysis reveals that these two clusters of 
data represent electricity usage for WD and NWD. Figure 13 also shows that model’s predictive power 
is R2 = 0.64.  

Figure 14 shows the importance of five independent variables identified by the ANN model. It is 
apparent that the model recognizes WDI as the most important variable with temperature as the second 
most important variable. The least important variable is wind speed. Normalization is normally carried 
out to remove the variations in data due to different seasons in order to get reference line for 
comparison. 

 

Figure 11. Structure of ANN model for KWC building. 
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Figure 12. Residual plot for ANN predicted daily electricity usage. 

 

Figure 13. Actual Vs ANN predicted values of daily electricity consumption for KWC building. 
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3.3. Error analysis 

The error analysis is performed for evaluating the proposed models using following three 
different error metrics: 
(1) Mean Relative Error (MRE)  

This error is a measure of difference of observed and predicted values. Mathematically, it is 
represented as: 

MRE ൌ 1/𝑁 ∑ ቚ௓௜ି௓ᇱ௜

௓௜
ቚே

௜ୀଵ                              (6) 

(2) Mean Absolute Percentage Error (MAPE) 
This error is given by Eq 8: 

𝑀𝐴𝑃𝐸ሺ%ሻ ൌ  ଵ଴଴

ே
∑ ቚ௓௜ି ௓ᇱ௜

௓௜
ቚெ

௜ୀଵ                           (7) 

where N is sample size and Zi = observed value, Z′i = predicted value. 
Predicted electricity consumption (by MR and ANN) have been compared with the actual 

electricity consumption for WD and NWD as shown in Figures 15 and 16 respectively. It is clear that 
both models predict electricity usage well during first six months of the year after which ANN 
predicts little better than MR and follows the profile of actual consumption displaying its higher 
accuracy during the last six months. Figure 17 displays a scatter plot of real and forecasted daily 
electricity consumption of Keyworth Centre building for working and non-working days for year 2012.  

The performance of two modelling techniques has been evaluated using Mean Relative Error and 
Mean Absolute Percentage Error. The results are shown in Table 1. It is apparent that for both working 
and non-working days, ANN performs slightly better than MR with an average MAPE of 4.59%, i.e., 
about 0.45% less than MR for non-working days, and 2.44% for working days whereas MR displays a 
MAPE of 3.34%.  

 

Figure 14. Importance level of five different independent variables identified by ANN model. 
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Figure 15. Comparison of real Vs forecasted daily electricity usage on WD. 

 

Figure 16. Comparison of real Vs forecasted daily electricity usage on NWD. 

 

Figure 17. Comparison of real Vs forecasted daily electricity usage. 

The complete error analysis is summarized in Table 1. It shows that both modelling techniques 
perform reasonably with ANN outperforming MR by a little margin for both working and non-working 
days. Moreover, such tools are helpful for policy and decision makers as these models facilitate in 
setting up their organizations’ financial priorities. Energy managers could also use these for the 
production of their prediction studies. 
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Table 1. Error matrix for the two models. 

 Error matrix MR (%) ANN (%) 

Non-working days MRE 5.04 4.59 

MAPE 5.12 4.59 

Working days MRE 3.09 2.81 

MAPE 3.34 2.44 

3.4. Limitations 

Some of the limitations of this study are summarized below: 
(1) Use of proxy variable for occupancy determination in the building. 
(2) Models are applicable till the operating conditions remain same.  
(3) The models lack validation test for similar types of buildings due to unavailability of the data. 

4. Conclusions  

In this study, two data-driven energy forecasting techniques, i.e., ANN and MR have been used 
to estimate daily electricity usage of an academic building of London South Bank University situated 
in London, United Kingdom. The historical data of electricity usage and five different climate factors 
were available for years 2007 to 2011. The study reveals that academic building energy consumption 
is strongly dependent on Week Day Index which is a proxy variable for the occupancy of the 
building and on Dry Bulb Temperature. Results also show that ANN performs better than MR with 
MAPE for working and non-working days 2.44% and 4.59% respectively. In a nutshell, both 
modelling techniques performed reasonably well with ANN outperforming MR with a little margin. 
The study lays foundation for prediction studies of other building categories and has the potential to 
help energy managers to accurately predict the energy usage pattern of the buildings. Secondly, as long 
as the building operates in the same manner under the same operating schedule the predicted results 
are free of time horizon. 
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