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1. Introduction and main results

In this paper we are interested to the Dirichlet problem
Dk(D2u) + f (u) = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω,

(1.1)

in a bounded domain of Rn, for an integer k ∈ {1, . . . , n}, where

Dk(D2u) =

k∑
i=1

∂2u
∂x2

i

(1.2)

and f (u) is a positive nonlinearity on (0,∞), which can go to infinity as u→ 0.
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The above problem has a positive solution for uniformly elliptic equations (k = n) with a positive
polynomial nonlinearity with negative exponent:

∆u + pu−γ = 0 (1.3)

See for instance Lazer-McKenna [31] and Crandall-Rabinowitz-Tartar [24]. For n = 1 equations of
this kind arise in the theory of pseudoplastic fluids, appearing as generalized Emden-Fowler equations
with negative exponent. See Nachman-Callegari [32].

Existence and uniqueness results results have also been obtained for equations with advection terms.
See Giarrusso-Porru [27] and Porru-Vitolo [34].

Partial diffusion operators have been considered with respect to the maximum principle in
cylindrical domains in [19–21], which had been previously investigated for linear and fully nonlinear
uniformly elliptic equations in [4, 9, 10, 16, 19, 37–39].

In the present paper, we will show that similar results hold in the case of degenerate, not uniform
ellipticity (k < n). For nonlinearities as in equation (1.3) in degenerate elliptic cases see also [5].

We need in our case a geometric condition (G) introduced by Blanc and Rossi [8], which says for
the present use that Ω is a strictly convex domain. See Section 4.

Theorem 1.1. Let Ω be a bounded domain of Rn satisfying condition (G). Let f : (0,∞) → (0,∞)
be a continuous non-increasing function. Then there exists an unique solution, positive in Ω, of the
Dirichlet problem (1.1).

It is plain that Theorem 1.1 holds more generally in the case of the Dirichlet problem
Dk,δ(D2u) + f (u) = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω,

(1.4)

for anisotropic partial diffusion operators

Dk,δ(D2u) =

k∑
i=1

δi
∂2u
∂x2

i

(1.5)

with δi > 0, i = 1, . . . , k.
The paper is organized as follows. In Section 2 we introduce the different notions of ellipticity and

the viscosity solutions, then we establish comparison principles and recall existence, uniqueness and
regularity results. In Section 3 we study an associate ODE and construct radial solutions of partial
Laplace equations with positive non-increasing reaction terms. In Section 4 we prove the existence
of Dirichlet problems for the smallest and the largest Hessian eigenvalue equation with positive non-
increasing reaction terms. In Section 5 we finally prove Theorem 1.1.

2. Definitions and auxiliary results

Let F be a mapping from Ω × R × Rn × Sn to R, where Ω is an open connected set of Rn and Sn

the vector space of real n× n symmetric matrices. The fully nonlinear operator F acts on u ∈ C2(Ω) as
follows:

F [u](x) = F (x, u(x),Du(x),D2u(x)), x ∈ Ω, (2.1)
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where Du is the gradient and D2u the Hessian matrix of the function u.
As usual, Sn is endowed with the partial order relationship: X ≤ Y if and only if X−Y is semidefinite

positive. Moreover, if F is constant with respect to a variable, we omit such a variable.
For instance, the operator considered in Eq (1.1) can be represented as

F [u] = F (u,D2u), (2.2)

where

F (t, X) =

k∑
i=1

Xii + f (t). (2.3)

Definition 1. We say that F is degenerate elliptic in Ω if and only if

F (x, t, ξ, X) ≤ F (x, t, ξ,Y) (2.4)

for all X,Y ∈ Sn such that X ≤ Y and (x, t, ξ) ∈ Ω × R × Rn.

Therefore the operator (2.3) under consideration is degenerate elliptic for all k = 1, . . . , n.
Furthermore, let

Πk =

k∑
i=1

ei ⊗ ei (2.5)

be the projection matrix on the vector subspace generated by the first k vectors e1, . . . , ek of the
canonical basis of Rn, so that in particular Πn = I, the n × n identity matrix. Setting

Dk(X) =

k∑
i=1

Xii = Tr(ΠkX), (2.6)

then
F (t, X) = Dk(X) + f (t). (2.7)

Definition 2. We say that F is proper in Ω if and only if it is degenerate elliptic and

F (x, t, ξ, X) ≤ F (x, s, ξ,Y) (2.8)

for all s, t ∈ R such that s ≤ t and (x, ξ) ∈ Ω × Rn × Sn.

Assuming that f is a non-increasing function, the operator (2.7) is proper. Under the same condition
on f , the operator (2.7) is proper when considering any matrix A ≥ 0 instead of Πk.

Definition 3. Let λ and Λ be positive constants such that λ ≤ Λ. We say that F is uniformly elliptic in
Ω with ellipticity constants λ and Λ if and only if

F (x, t, ξ,Y) − ΛTr(Y − X) ≤ F (x, t, ξ, X) ≤ F (x, t, ξ,Y) − λTr(Y − X) (2.9)

for all X,Y ∈ Sn such that X ≤ Y and (x, t, ξ) ∈ Ω × R × Rn.
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It is plain that the uniform ellipticity is stronger than the degenerate ellipticity. Moreover, let
M±

λ,Λ(X), X ∈ Sn, be the extremal Pucci operators:

M+
λ,Λ(X) = ΛTr(X+) − λTr(X−) = sup

λI≤A≤ΛI
Tr(AX)

M−
λ,Λ(X) = λTr(X+) − ΛTr(X−) = inf

λI≤A≤ΛI
Tr(AX).

(2.10)

ThenM±
λ,Λ are uniformly elliptic and (2.10) can be restated as

M−
λ,Λ(Y − X) ≤ F (x, t, ξ,Y) − F (x, t, ξ, X) ≤ M+

λ,Λ(Y − X). (2.11)

It is easy to check that the operators (2.7) are uniform elliptic only for k = n, when the second-order
part is the Laplace operator ∆u.

For k < n (directional diffusion) the operators (2.6) are degenerate elliptic (proper if f is non-
increasing), but not uniformly elliptic. See [41].

Even though a degenerate elliptic fully nonlinear operator F [u] is defined in the classical sense only
when u is twice differentiable, nonetheless the equation F [u] = 0 makes (a weaker) sense also when u
is less regular.

Here we will consider the viscosity sense. Let D be a locally compact subset of Rn, the spaces of
upper and lower semicontinuous functions in D will be indicated with usc(D) and lsc(D), respectively.

Let x0 ∈ D and u : D→ R. We denote by J2,±
D u(x0) the second order superjet and subjet of u at x0:

J2,+
D u(x0) = {(ξ, X) ∈ Rn × Sn : u(x0 + h) ≤ u(x0) + 〈ξ, h〉 + 1

2〈Xh, h〉

+ o(|h|2) as h→ 0
}
;

J2,−
D u(x0) = {(ξ, X) ∈ Rn × Sn : u(x0 + h) ≥ u(x0) + 〈ξ, h〉 + 1

2〈Xh, h〉

+ o(|h|2) as h→ 0
}
.

(2.12)

Definition 4. Let u be in usc(D), resp. in lsc(D). We say that u is a viscosity subsolution, resp.
supersolution, in Ω of the equation F [u] = 0 if and only if for all x0 ∈ D

F (x0, u(x0), ξ, X) ≥ 0 ∀ (ξ, X) ∈ J2,+
O

u(x0), (2.13)

resp.
F (x0, u(x0), ξ, X) ≤ 0 ∀ (ξ, X) ∈ J2,−

O
u(x0), (2.14)

A function u ∈ C(D), which is both a subsolution and a supersolution of the equation F [u] = 0 is
called a viscosity solution of such equation.

We will also use the notations F [u] ≥ 0, resp. F [u] ≥ 0, to say that u is a subsolution u, resp. a
supersolution, of the equation F [u] = 0.

For more properties of viscosity solutions we refer to [12, 22, 23, 30].

An important role is played by the maximum principle for subsolutions and, more generally, the
comparison principle between upper semicontinuous subsolutions and lower semicontinuous
supersolutions. See [23, 25, 41].

The comparison principle for the operators considered in this paper depends on the non-totally
degenerate ellipticity, which is intermediate between the degenerate and the uniform ellipticity. See
[3, 41].

Mathematics in Engineering Volume 3, Issue 3, 1–16.



5

Definition 5. Let F be a degenerate elliptic fully nonlinear operator. We say that F is non-totally
degenerate elliptic in Ω if and only if there exists a continuous function λ(x) > 0 such that

F (x, t, ξ, X + εI) − F (x, t, ξ, X) ≥ λ(x)ε (2.15)

for all ε > 0 and (x, t, ξ, X) ∈ Ω × R × Rn × Sn.

It is easy to check, by linearity, that the operators (2.5) are non-totally degenerate elliptic with
λ(x) = k: in fact,

k∑
i=1

(X + εI)ii =

k∑
i=1

Xii + εk (2.16)

We will also consider below other non-totally degenerate elliptic operators, the partial traces

P−k (X) =

k∑
i=1

λi(X), (2.17)

where λ1(X) ≤ · · · ≤ λn(X) are the eigenvalues of the matrix X ∈ Sn, and the dual partial trace operators

P+
k (X) = −P−k (−X) =

n∑
i=n−k+1

λi(X). (2.18)

Such operators arise for geometric problems of partial mean curvature [35,36,42] and in stochastic
differential games [7,8]. They have been firstly investigated by Harvey-Lawson [28] and Caffarelli-Li-
Nireneberg [13–15], and then in subsequent papers among which for instance [1, 6–8, 25, 26, 40].

Is is also easy to check as well that the operators (2.17) and (2.18) are non-totally degenerate elliptic
with λ(x) = k . For instance

k∑
i=1

λi(X + εI) =

k∑
i=1

λi(X) + εk (2.19)

Note also that all operatorsDk and P±k coincide with the Laplace operator when k = n. Only in this
case such operators are uniformly elliptic.

Lemma 2.1. Let F (t, X) =M(X) + f (t) be a degenerate elliptic operator, where f is a continuous and
non-increasing positive function in (0,∞).

Let u ∈ usc(Ω) and v ∈ lsc(Ω) be non-negative functions such that F [u] ≥ 0 and F [v] ≤ 0 in a
bounded domain Ω. If u ≤ v on ∂Ω, then u ≤ v in Ω.

Proof. Since the function u − v is upper semicontinuous, then u − v has a maximum at a point x̂ ∈ Ω.
We have to prove that, u ≤ v on ∂Ω, then u(x̂) ≤ v(x̂).

Suppose, by contradiction, that maxΩ(u − v) = δ > 0., namely

u(x̂) − v(x̂) = δ > 0, (2.20)

Let Bd a ball centered at the origin such that Ω ⊂ Bd, and where 0 < ε < δ
d2 . Then set

uε(x) = u(x) +
ε

2
|x − x̂|2, (2.21)
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By the choice of ε, we have for x ∈ ∂Ω:

uε(x) − v(x) +
δ

2
≤
ε

2
|x − x̂|2 +

δ

2

≤
ε

2
d2 +

δ

2
≤ δ = uε(x̂) − v(x̂),

(2.22)

so that the usc function uε − v has a positive maximum at a point of Ω.
Following the proof of [23, Theorem 3.3], let xα, yα ∈ Ω be such that

Mα = max
Ω×Ω

(
uε(x) − v(y) − α

2 |x − y|2
)

= uε(xα) − v(yα) − α
2 |xα − yα|2.

(2.23)

Let x̂ε ∈ Ω be a limit point of xα. From [23, Lemma 3.1] we have

lim
α→∞

α|xα − yα|2 = 0;

lim
α→∞

Mα = uε(x̂ε) − v(x̂ε) = max
Ω

(uε(x) − v(x)).
(2.24)

From the above limits:

lim
α→∞

xα = x̂ε = lim
α→∞

yα;

lim
α→∞

(uε(xα) − v(yα)) = uε(x̂ε) − v(x̂ε).
(2.25)

By the upper semicontinuity of uε and the lower semicontinuity of v, on a subsequence:

lim
α→∞

uε(xα) = uε(x̂ε), lim
α→∞

v(yα) = v(x̂ε). (2.26)

By (2.22) we have max∂Ω(uε − v) < uε(x̂ε) − v(x̂ε). Therefore x̂ε ∈ Ω, and xα, yα ∈ Ω for large α, by
the upper semicontinuity of uε − v.

From [23, Theorem 3.2] we deduce that matrices Xα,Yα ∈ Sn such that

(α(xα − yα), Xα) ∈ J
2,+
Ω w(xα),

(α(xα − yα),Yα) ∈ J
2,−
Ω v(yα),

(2.27)

and
Xα ≤ Yα. (2.28)

Since v is a viscosity subsolution, then

M(Yα) + f (v(yα)) ≤ 0. (2.29)

On the other hand, by the non-totally degenerate ellipticity, uε is a viscosity solution of the
differential inequality

M(D2uε(x)) + f
(
uε(x) − ε

2 |x − x̂|2
)
≥ λ(x)ε in Ω (2.30)
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and therefore
M(Xα) + f

(
uε(x) − ε

2 |x − x̂|2
)
≥ λ(xα)ε. (2.31)

Combining (2.29) and (2.31), by the degenerate ellipticity:

M(Xα) + f
(
uε(xα) − ε

2 |xα − x̂|2
)
≥M(Yα) + f (v(yα)) + λ(xα)ε

≥M(Xα) + f (v(yα)) + λ(xα)ε,
(2.32)

so that
f
(
uε(xα) − ε

2 |xα − x̂|2
)
≥ f (v(yα)) + λ(xα)ε. (2.33)

Let α→ ∞ using (2.26). Then

f ((uε(x̂ε) − ε
2 |x̂ε − x̂|2) ≥ f (v(x̂ε)) + λ(x̂)ε. (2.34)

From this, by the non-increasing monotonicity of f we have therefore

uε(x̂ε) − v(x̂ε) ≤ ε
2 |x̂ε − x̂|2. (2.35)

On the other hand, recalling the assumption u(x̂) − v(x̂) = δ > 0, we have:

uε(x̂ε) − v(x̂ε) = max
Ω

(uε − v) ≥ max
Ω

(u − v) = δ, (2.36)

Together with (2.36), this implies 0 < δ ≤ ε
2 |x̂ε − x̂|2, which cannot hold for small ε > 0. So the

assumption u(x̂) > v(x̂) leads to a contradiction, and it turns aout that u(x̂) ≤ v(x̂). �

The above theorem works for all non-totally degenerate elliptic operators, in particular whenM is
the partial diffusion operatorDk as well as for the partial trace operators P±k .

We will use in the sequel the interior Lipschitz estimate of [25, Lemma 5.5] for P−1 (X) = λ1(X) and
the dual operator P+

1 (X) = λn(X). See also [6].

Lemma 2.2. Let u ∈ usc(B1) be a viscosity subsolution of the equation λ1(D2u) = g(x) in B1, a ball
of unit radius. If g is a continuous function, bounded below in B1, then u in B1 is Lipschitz-continuous
and the following interior Lipschitz estimate holds:

‖Du‖L∞(B1/2) ≤ C
(
‖u‖L∞(B1) + ‖g−‖L∞(B1)

)
, (2.37)

where B1/2 is the ball of radius 1/2 concentric with B1 and C a positive costant depending on n.
By duality, let u ∈ lsc(B1) be a supersolution of the equation λn(D2u) = g(x) in B1. If g is a

continuous function, bounded above in B1, then u ∈ Cα(B1) and the following interior Cα estimate
holds:

‖Du‖L∞(B1/2) ≤ C
(
‖u‖L∞(B1) + ‖g+‖L∞(B1)

)
, (2.38)

It is also worth to recall a very interesting C1,α regularity result proved in [33] for the highly
degenerate elliptic operator λ1, if we consider that, also in the uniform elliptic case, we have basically
the Cα regularity, and this is the best we can have in the general case. For Hölder estimates in the
uniform and degenerate elliptic case we refer for instance to [2, 11, 25]. For Lipschitz estimates
see [6, 25, 29].

Mathematics in Engineering Volume 3, Issue 3, 1–16.



8

3. On the equation λ j(D2u) + f (u) = 0: radial solutions

In this section we investigate the qualitative properties of the radial solutions of the equation
λ j(D2u) + f (u) = 0, where f is a continuous and non-increasing positive function in (0,∞).

Asin the case of entire solutions, we preliminarly discuss an associated ODE with suitable initial
conditions. See [17, 18].

In the present case, for j = 1 we consider the Cauchy problem
ϕ′′ + f (ϕ) = 0, r > 0,
ϕ(0) = t0 > 0
ϕ′(0) = 0.

(3.1)

and for j ≥ 2 {
ϕ′ + r f (ϕ) = 0, r > 0,
ϕ(0) = t0 > 0.

(3.2)

Here below we state some useful properties of the classical solutions.

Lemma 3.1. Let f : (0,∞) → (0,∞) be a continuous and non-increasing function. Then the local
classical solution of problem (3.1) or (3.2) is strictly decreasing and concave.

In case (3.1) the solution ϕ is C2 and

ϕ′′(r) ≤
ϕ′(r)

r
. (3.3)

In case (3.2) the solution ϕ is C1. Assuming in addition that f is C1, then ϕ is C2, and (3.3) holds
as well.

Proof. For problem (3.1) we refer for instance Lemma 2.1 of [27] and Lemma 3 of [34]. Here we limit
the discussion to problem (3.2).

Since f is positive and non-increasing, we have:

ϕ′(0) = lim
r→0+

ϕ′(r) = 0, ϕ′(r) = −r f (ϕ(r)) < 0 for r > 0;

ϕ′(r2) − ϕ′(r1) = − f (ϕ(r2)) + f (ϕ(r1)) ≤ 0 if r1 < r2.
(3.4)

Supposing that ϕ is C2,

ϕ′′(r) = − f (ϕ(r)) − r f ′(ϕ(r))ϕ′(r) ≤ − f (ϕ(r)) =
ϕ′(r)

r
. (3.5)

�

Lemma 3.2. Let f : (0,∞)→ (0,∞) be a non-increasing function. Let [0,R) be the maximal positivity
interval of the classical solution ϕ of problem (3.1) or (3.2). Then R f (t0) = R is finite. Moreover

(i) t1 < t2 ⇒ R f (t1) < R f (t2);

(ii) limt0→0+ R f (t0) = 0;

(iii) if g : (0,∞)→ (0,∞), then f ≤ g⇒ Rg(t0) ≤ R f (t0).
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Proof. We discuss the case of problem (3.2), referring to [27] and [34] for (3.1).
Since ϕ′(0) = 0 and ϕ(r) is concave, then R f (t0) < ∞.
The remaining properties (i), (ii) and (iii) can be deduced observing that:

R f (t0) =

(
2
∫ t0

0

dt
f (t)

)1/2

. (3.6)

�

4. On the equation λ j(D2u) + f (u) = 0: the Dirichlet problem

In this section we investigate the Dirichlet problem
λ j(D2u) + f (u) = 0 in Ω

u > 0 in Ω

u = 0 on Ω

(4.1)

with f strictly decreasing in (0,∞).
We start solving by the Perron’s method the approximate problems{

λ j(D2u) + f (u) = 0 in Ω

u = ε on Ω
(4.2)

with ε > 0.
In order to do this, we need some geometric property of the boundary ∂Ω. Consider the Dirichlet

problem {
λ j(D2u) = 0 in Ω

u = g on Ω
(4.3)

Definition 6. (condition (G)). Given y ∈ ∂Ω, for every r > 0 there exists δ > 0 such that

(x + R v) ∩ Br(y) ∩ ∂Ω , ∅ (4.4)

for every x ∈ Bδ(y) and direction v ∈ Rn (|v| = 1).

This is a necessary and sufficient to solve the Dirichlet problem (4.3) for all j = 1, . . . , n and all
continuous boundary data g.

Such condition can be weakened to require that (4.4) holds for only one direction v in each subspace
of dimension j and n − j to solve (4.3) for a singòe j such that 1 < j < n. See Blanc and Rossi [8,
Theorem 1].

Lemma 4.1. Let Ω be a bounded open set satisfying the geometric condition (G), and
f : (0,∞) → (0,∞) be a continuous and strictly decreasing function. For every ε > 0 there exists an
unique continuous viscosity solution of problem (4.2) such that u(x) ≥ ε.

Proof. As announced before, we use the Perron’s method [23, Theorem 4.1].
The comparison principle is provided by Lemma 2.1. We need to find a subsolution u and a

supersolution u such that u = ε = u on ∂Ω.
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The function u ≡ ε is plainly a subsolution.
To find a supersolution we solve the problem{

λ1(D2v) = 0 in Ω

v(x) = −ε − 1
2 f (ε)|x|2 on ∂Ω

(4.5)

See for instance [8,28,40]. By duality u(x) = −v(x)− 1
2 f (ε)|x|2 is a viscosity solution of the problem{

λn(D2u) + f (ε) = 0 in Ω

u(x) = ε on ∂Ω.
(4.6)

Since λn(D2u) ≤ 0 in Ω and u ≥ ε on ∂Ω, by the maximum principle [1,26,28] we have u ≥ ε in Ω.
By the non-increasing monotonicity of f , then f (u) ≤ f (ε). On the other hand λ j ≤ λn, so that u can
be chosen as the supersolution we are searching for:{

λ j(D2u) + f (u) ≤ 0 in Ω

u(x) = ε on ∂Ω.
(4.7)

By [23, Theorem 4.1] we conclude that there exists an unique continuous viscosity solution of
problem (4.2).

Furthermore, by the comparison principle, being u ≡ ε a subsolution, we have u ≥ ε in Ω. �

From the solutions of problems (4.2), we obtain as limit the solution of problem (4.1) for j = 1 and
j = n.

Firstly we show that such limit is a positive function.

Lemma 4.2. Let Ω be a bounded open set satisfying the geometric condition (G), and f : (0,∞) →
(0,∞) be a continuous non-increasing function.

For h ∈ N, let uh be the solutions of problems (4.2) with ε = 1
h for j = 1. Then for every compact

subset K of Ω there exists a number tK > 0 such that

uh(x) ≥ tK ∀ x ∈ K and ∀ h ∈ N (4.8)

Suppose in addition that f is C1. Then the same holds for the solutions of problems (4.2) with ε = 1
h

for j = 2, . . . , n.

Proof. Let K be a compact subset of Ω.
In the case j = 1, we consider a maximal positive solution ϕ of the Cauchy problem (3.1). We

choose an initial condition ϕ(0) = t0 > 0 such that the maximal positivity radius R is small enough (see
Lemma 3.2), say 0 < R ≤ 1

2 dist(K, ∂Ω).
For any x0 ∈ K, let φ(x) = ϕ(|x − x0|). Then φ is C2, and by (3.3) :

λ1(D2φ(x)) = ϕ′′(|x − x0|). (4.9)

Thus φ is a classical solution of the Dirichlet problem:{
λ1(D2φ) + f (φ) = 0 in BR(x0)
φ = 0 on ∂BR(x0).

(4.10)
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For j ≥ 2, we consider a maximal positive solution ϕ of the Cauchy problem (3.2), and choose the
initial condition ϕ(0) = t0 > 0 as before, depending on the maximal positivity radius R.

In this case, we need to assume that f is C1 in order that the radial function φ(x) = ϕ(|x − x0|) is C2,
according to Lemma 3.1, and by (3.3) :

λ j(D2φ(x)) = ϕ′(|x − x0|)/|x − x0|. (4.11)

Thus we have found as well a classical solution φ of the Dirichlet problem:{
λ j(D2φ) + f (φ) = 0 in BR(x0)
φ = 0 on ∂BR(x0).

(4.12)

From now on, we can proceed with the same argument for all j = 1, . . . , n.
We note that uh ≥ 1/h > 0 = φ on ∂BR(x0), for every h ∈ N. Comparing the solutions φ and uh we

have uh(x) ≥ φ(x) = ϕ(|x − x0|) in BR(x0).
In particular uh(x0) ≥ ϕ(0) = t0, which proves the assert with tK = t0. �

Theorem 4.3. Let Ω be a bounded open set satisfying the geometric condition (G), and f : (0,∞) →
(0,∞) be a continuous non-increasing function. Then for j = 1 there exists an unique continuous
positive viscosity solution of problem (4.1).

Proof. For h ∈ N, let uh be the solutions of the Dirichlet problems (4.2) with ε = 1
h for j = 1. By

the comparison principle, this is a non-increasing sequence. Therefore the uh converge pointwise, as
h→ ∞, to a function u in Ω such that u = 0 on ∂Ω.

From Lemma 4.2 the function u has a positive lower bound every compact subset K of Ω, namely
u(x) ≥ tK > 0 for all x ∈ K.

We will show that the uh converge locally uniformly in Ω. Thus, by the stability theorems for
viscosity solutions [12, 23], u is a solution of problem (4.1), which is unique by the comparison
principle.

We are left therefore with proving the local uniform convergence of the uh.
To this end, we firstly observe that, being u1 ≥ uh > 0 on Ω for all h ∈ N, the uh are equi-bounded

in Ω: setting M = maxΩ u1,
0 ≤ uh(x) ≤ M. (4.13)

Next, let us fix a compact subset K of Ω, and consider a finite covering of K with balls of type
BR/4(x0), where x0 ∈ K and 0 < R ≤ 1

2 dist(K, ∂Ω).
As in the proof of Lemma 4.2, we choose t0 > 0 be such that R is the maximal positivity radius

of Cauchy problem (3.1). Letting ϕ be the maximal positive solution, we obtain a radial function
φ(x) = ϕ(|x − x0|), which is a classical solution of the Dirichlet problem (4.12).

By the comparison principle uh(x) ≥ φ(x) in BR(xi). In particular, setting t∗K = ϕ(R/2), and using the
decreasing monotonicity of ϕ, we have:

uh(x) ≥ ϕ(R/2) = t∗K in BR/2(x0), ∀ h ∈ N. (4.14)

As a consequence:

f (uh(x)) ≤ f (t∗K) ≡ MK ∀ x ∈ BR/2(x0), ∀ h ∈ N. (4.15)
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Then, for all x0 ∈ K:
λ1(D2uh) ≥ −MK in BR/2(x0) (4.16)

Therefore, by (4.16), (2.37) and (4.13):

‖Duh‖L∞(BR/4(x0)) ≤ C (M + MK) . (4.17)

This inequality, together with (4.13), shows that the uh are equi-continuous and equi-bounded on K.
By Ascoli-Arzelà therefore uh → u as h→ ∞ uniformly on K, as it was to be proved. �

We prove the same result for the Dirichlet problem (4.1) with j = n. We follow the same lines of
the proof of Theorem 4.3 but an additional approximation argument is needed since ϕ is C2 provided
f is C1, and we want to show the result under the weaker assumption that f is C0.

Theorem 4.4. Let Ω be a bounded open set satisfying the geometric condition (G), and f : (0,∞) →
(0,∞) be a continuous non-increasing function. Then for j = n there exists an unique continuous
positive viscosity solution of problem (4.1).

Proof. Case 1: f is C1 non-increasing
We can repeat step by step the proof of Theorem 4.3 if we assume that f is C1, referring to (4.2) for

j = n instead of j = 1. We construct as there a non-increasing sequence uh, converging to a function u
in Ω.

The sequence uh is equi-bounded as (4.13) in Ω.
We obtain easier way for all x0 ∈ Ω the inequality

λn(D2uh) ≤ 0 in BR/2(x0), (4.18)

Let K be a compact subset of Ω, and choose R as in the proof of Theorem 4.3.
From (4.18), by (2.38) and (4.13), we deduce for all x0 ∈ K:

‖Duh‖L∞(BR/4(x0)) ≤ CM. (4.19)

We conclude as before that the uh are equi-bounded and equi-continuous on K, so that u is a
continuous positive solution of problem (4.4) in this case.

Case 2: f is continuous non-increasing
We approximate f with a sequence fi of C1 non-increasing functions such that fi → f as i → ∞

locally uniformly in (0,∞) and fi+1 ≤ fi for all i ∈ N.
Then we solve, by Case 1, the following Dirichlet problems:{

λn(D2ui) + fi(ui) = 0 in Ω

ui(x) = 0 on ∂Ω.
(4.20)

Recall that the viscosity solutions ui are positive in Ω, for i ∈ N.
Since fi+1 ≤ fi, then λn(D2ui+1) + fi(ui+1) ≥ λn(D2ui+1) + fi+1(ui+1) = 0, so that by comparison

ui ≥ ui+1.
Then the ui converge to a function u in Ω such that u = 0 on ∂Ω.
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The ui are equi-bounded in Ω. In fact

0 ≤ ui(x) ≤ M, (4.21)

where M = maxΩ u1.
Let K be a compact subset of Ω.
Since λn(D2ui) ≤ 0 in BR(x0), then (2.38) and (4.21) imply, as in the proof of Case 1,

‖Dui‖L∞(BR/4(x0)) ≤ CM. (4.22)

Therefore the ui are equi-bounded and equi-continuous on K, and by Ascoli-Arzelà the uh converge
uniformly to u.

Next, choose t0 > 0 such that the maximal positive radius R = R f (t0) of the Cauchy problem (3.2)
is small enough, in order that 0 < R < 1

2 dist(K, ∂Ω).
Let ϕ be the maximal positive solution, and let ϕi be the maximal positive solutions of the following

Cauchy problems {
ϕ′i(r) + fi(ϕi(r)) = 0 in Ω

ϕi(0) = t0 on ∂Ω.
(4.23)

Since f ≤ fi ≤ f1, then R1 ≤ Ri ≡ R fi(t0) ≤ R and ϕ1 ≤ ϕi ≤ ϕ in [0,R1].
For x0 ∈ K, then φi(x) = ϕi(|x − x0|) is a classical radial solution of the Dirichlet problem{

λn(D2φi) + fi(φi) = 0 in BR(x0)
φi(x) = 0 on ∂BRi(x0),

(4.24)

Since ui > 0 in Ω, comparing ui and φi on BRi(x0), we get ui ≥ φi in BRi(x0).
In particular, recalling that the ϕi are decreasing, we get

ui(x) ≥ ϕi(R1/2) ≥ ϕ1(R1/2) ≡ t′K > 0 in BR1/2(x0). (4.25)

Therefore the fi uniformly converge to f in {ui(x) : x ∈ K, i ∈ N} ⊂ [t′K ,M]. We have already shown
that the ui converge uniformly on K.

By the aforementioned stability results for viscosity solutions, then u is a viscosity solution of the
Dirichlet problem (4.2) with j = n, positive in Ω by (4.25). �

5. Proof of Theorem 1.1

We have to solve problem (1.1) with f positive and non-increasing in (0,∞).
Thanks to the results of the previous section, we will use once again the Perron’s method of [23,

Theorem 4.1].
The comparison principle is provided by Lemma 2.1, recalling that Dk is non-totally degenerate

elliptic.
Next we solve with Theorems 4.3 and 4.4 the following Dirichlet problems:{

λ1(D2u) + 1
k f (u) = 0 in Ω

u(x) = 0 on ∂Ω.
(5.1)
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and {
λn(D2u) + 1

k f (u) = 0 in Ω

u(x) = 0 on ∂Ω.
(5.2)

Observe that

kλ1(X) ≤
k∑

i=1

Xii ≤ kλn(X), (5.3)

Then u and u are continuous viscosity subsolution and supersolution, respectively, positive on Ω, of
the equation

Dk(D2u) + f (u) ≡
k∑

i=1

∂2u
∂x2

i

+ f (u) = 0 in Ω (5.4)

such that u = 0 = u on ∂Ω.
Theorem 4.1 of [23] implies therefore that there exists an unique positive viscosity solution of the

problem 
k∑

i=1

∂2u
∂x2

i

+ f (u) = 0 in Ω

u(x) = 0 on ∂Ω,

(5.5)

as wanted.
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for solutions of elliptic and parabolic equations. Commun Pure Appl Math 48: 539–570.

10. Cafagna V, Vitolo A (2002) On the maximum principle for second-order elliptic operators in
unbounded domains. C R Math Acad Sci Paris 334: 359–363.

11. Caffarelli LA (1989) Interior a priori estimates for solutions of fully nonlinear equations. Ann Math
130: 189–213.
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