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Abstract: The stochastic processes is a significant branch of probability theory, treating probabilistic
models that develop in time. It is a part of mathematics, beginning with the axioms of probability and
containing a rich and captivating arrangement of results following from those axioms. In probability,
a convex function applied to the expected value of an random variable is always bounded above by the
expected value of the convex function of the random variable. The definition of n-convex stochastic
process is introduced in this paper. Moreover some basic properties of r-convex stochastic process
are derived. We also derived Jensen, Hermite—Hadamard and Ostrowski type inequalities for n-convex
stochastic process.
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1. Introduction

In probability theory and other related fields, a stochastic process is a mathematical tool generally
characterized as a group of random variables. Verifiably, the random variables were related with or
listed by a lot of numbers, normally saw as focuses in time, giving the translation of a stochastic
process speaking to numerical estimations some system randomly changing over time, for example,
the development of a bacterial populace, an electrical flow fluctuating because of thermal noise, or
the development of a gas molecule. Stochastic processes are broadly utilized as scientific models of
systems that seem to shift in an arbitrary way. They have applications in numerous areas including
sciences, for example, biology, chemistry, ecology, neuroscience, and physics as well as technology
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and engineering fields, for example, picture preparing, signal processing, data theory, PC science,
cryptography and telecommunications. Furthermore, apparently arbitrary changes in money related
markets have inspired the broad utilization of stochastic processes in fund. For the detailed survey
about convex functions, inequality theory and applications, we refer [1-4] and references therein.

The study of convex stochastic process was initiated by Nikodem in 1980 [5]. He also investigated
some regularity properties of convex stochastic process. Later on, some further results on convex
stochastic process are derived in 1992 by Skowronski [6]. In recent developments on convex
stochastic process, Kotrys [7] investigated Hermite—Hadamard type inequality for convex stochastic
process and gave results for strongly convex stochastic process. In [8], the inequality for A-convex
stochastic process were derived. The interesting work on stochastic process are [17-21].

The aim of this paper is to introduce the notion of 7-convex stochastic process and derive Hermite—
Hadamard and Jensen Type inequality for n-convex stochastic process. The main motivation for this
paper is the idea of ¢-convex function and n-convex function [9, 10], respectively. For other interesting
generalizations, we refer [13—16,22-25] to the readers and references therein.

The mapping & defined for a o field Q2 to R is F-measurable for each Borel set B € S(R), if

{weQ/éw) e B} eF.

For a probability space (€2, F, P), the mapping £ is said to be random variable. The random variable
& becomes integrable if
f |éldp < oo.
Q

If the random variable ¢ is integrable, then E(£) = fQ &dp exists and is called expectation of £. The
family of integrable random variables & : Q — R is denoted by L'(Q, F, P).

Now we present the definition and basic properties of mean-square integral [11].

Suppose that & : I x Q — R is a stochastic process with E[£(f)*] < co for all t € I and [a,b] € I,
a=1ty <t <t <---<t, =bisapartition of [a,b] and O, € [#;,_,#] for all k = 1,--- ,n. Further,
suppose that & : I X Q — R be a random variable. Then, it is said to be mean-square integral of
the process &; on [a, b], if for each normal sequence of partitions of the interval [a, b] and for each
O € [, ), k=1,--- ,n, we have

n 2
[Z ENODAW — tr-1) — fz) } =0.
k=1

lim E

Then, we can write

b
&() = f &(s,)ds  (a.e.). (1.1)

The monotonicity of the mean square integral will be used frequently throughout the paper. If
&1(t,.) < &(1,.) (a.e.) for the interval [a, b], then

b b
f &t )de < f &t )dt (a.e.) (1.2)
The inequality (1.2) is the immediate consequence of the definition of the mean-square integral.
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Lemma 1.1. If X : I X Q — R is a stochastic process of the form X(t,.) = A(.)t + B(.), where
A, B : Q — R are random variables such that E[A?] < oo, E[B*] < o and [a, b] C I, then

b - a?

b
f X(t,.)dt = A(.) + B()(b—a) (a.e.). (1.3)

Now, we present the definition of r-convex stochastic process.

Definition 1.2. Let (Q, A, P) be a probability space and I C R be an interval, then £ : I X Q — R is an
n-convex stochastic process, if

E(Aby + (1 = Dby, .) < &by, ) + A(&(Dy, ), €(ba, ) (ace) (1.4)
forall b;,b, € I and 1 € [0, 1].

In (1.4), if we take n(b;, b,) = by — b,, we obtain convex stochastic process. By taking &(by,.) =
&(by, ) in (1.4) we get
An(&(by, ), &(b1,.)) 2 0

for any by € I and ¢ € [0, 1]. Which implies that
n(f(bla ')aé:(bl, )) > O

for any b; € I.
Also, if we take 4 = 1 in (1.4), we get

§(br,.) = &(ba, ) < (&(by, ), E(b2, )

for any by, b, € I. The second condition implies the first one, so if we want to define 7 convex stochastic
process on an interval / of real numbers, we should assume that

n(by,by) > by — b, (1.5)

for any by, b, € 1.
One can observe that, if £ : I — R is convex stochastic process and n : £(I) X é(I) — R is an
arbitrary bi-function that satisfies the condition (1.5), then for any by, b, € I and ¢ € [0, 1], we have

Eby + (1 = 0)by,.) < &(b2, ) + AE(by, ) = &(D2, )
< &(b, ) + (b1, ), (b2, ),

which tells that £ is n7 convex stochastic process.

Definition 1.3. (n Quasi-convex stochastic process) A stochastic Process & : I X Q — R is said to be
quasi-convex stochastic process if

@by + (1 = )by, ) < max{&(bs, ), E(ba, ) + n(é(Dy, ), &(b2, ) (a.e.)

Definition 1.4. (n-affine) A stochastic process & : I X Q — R is said to be n-affine if

&by + (1 = Dby, .) = &by, ) + m(§(D1,.), (b2, ) (ace.)
for all by,b, € I and t € [0, 1]
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Definition 1.5. (Non-Negatively Homogeneous)A function 7 : A X B — R is said to be non-negatively
homogenous if

n(yb1,yby) = yn(bi, by) (1.6)
for all b;,b, e Randy > 0.
Definition 1.6. (Additive)A function 7 is said to be additive if

n(xi,y10) + n(x2,y2) = n(x; + X2, y1 + y2) (1.7)
for all x, X2,V1, )2 € R.

Definition 1.7. (Non-negatively linear function)A function 7 is said to be non-negatively linear, if it
satisfy (1.6) and (1.7).

Definition 1.8. (Non-decreasing in first variable)A function 7 is said to be non-decreasing in first
variable if by < b, implies n(by, bs3) < n(b,, bs) for all by, by, b; € R.

Definition 1.9. (Non-negatively sub-linear in first variable)A function 7 is said to be non-negatively
sub-linear in first variable if

n(y(b1 + ba), b3) < yn(by, b3) + yn(ba, bs)
for all by, by, b3 € Randy > 0.
We shall begin with few preliminary proposition for 77-convex function.
Proposition 1. Consider two i convex stochastic process &,,&, : I X Q — R, such that

1. If n is additive then &, + &, : I — R is n convex stochastic process.
2. If n is non-negatively homogenous, then for any y > 0, y&, : I X Q — R is - convex stochastic
process.

Proof. The proof of the proposition is straight forward. O

Proposition 2. If ¢ : [by, b,] — R is n convex stochastic process, then

max £(x,.) < maxig(bs,.),&(ba, ) +n(é(by, ), (D, )}

x€lby,b2]

Proof. Consider x = ab; + (1 — a)b, for arbitrarily x € [by, b,] and some a € [0, 1]. We can write

Ex,.) =&ab + (1 —a)by,.).

Since £ is i convex stochastic process, so by definition

£(x,.) < &(ba, ) + an(&(by, ), €(b2, ) (1.8)

and
&b, ) + an(&(by, ), &(ba, ) < max{§(b, ), &(Da, ) + n(&(by, ), £(b2, ) . (1.9)
Since x is arbitrary, so from (1.8) and (1.9), we get our desired result. O
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Theorem 1.10. A random variable € : I X Q0 — R is  convex stochastic process if and only if for any
c1,C2,¢3 € T with ¢y < ¢ < ¢3, we have

(c3—c2) &l ) = &(cs, ) ) >0.

det (c3—c1) ncr,.), &cs, )

Proof. Suppose that £ is an -convex stochastic process and ¢y, ¢;, c3 € I such that ¢; < ¢; < ¢3. Then,
their exits «; € (0, 1), such that
2 =aic;+ (1 —ai)e;

where a; = %

By definition of 7 convex stochastic process, we have

&(cr,.) = E(ajey + (1 —ay)cs, )

< ez, + (Z — ) GCIAR)
SO
0 < &(cs,.) — e ) + EZ — Z;n@(cl, ), £(c3,.))

0 < (&(c3,.) = &(ea, ez = ¢) + (3 — e2Iné(cy, ), (e, )

Hence

(c3 =) &lea, ) =&(es,0) ) 0
(c3—c1) né(cy,.),é(c3,.) |~

For the reverse inequality, take y;, y, € I with y; < y,. Choose any a; € (0, 1), then, we have

det

yvi <ayr + (1 —ap)y: <y

So, the above determinant is;

0 < [y> = [ay1 + (1 =)y nEW1, ), €02, ) = (2 = yD)(E(@ryr + (1 — ay)ya,.) = E(G2, 2)

implies
Gy + (I —a)ys,.) < EOn,.) + al%ﬂ(f@l, 2, €02, .)
< &0, ) + i€y, ), €02, ).
Which is as required. O

2. Jensen type inequality

We will use the following relation to prove the Jesen type inequality for -convex stochastic process.
Let £ : I xQ — R be an p-convex stochastic process. For x, x, € I and a; + a;=1, we have

Elax) + anxa, ) < E(xp, ) + an(é(xy, ), E(x2,.)) .
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n i
Also, when n > 2 for xi, xs,...,x, €I, ), @; = l and T; = ) a;, we have
i=1 j=1

n n—1
@;
iXis-| = T,- i T Xy, -
f(zax ) f( 1'1T"‘X o )

i= 1

n—1
< é‘(-xn’ ) + Tn—ln[é: (Z TLllX,', ) 9§:(xn’ )] (21)
=1 """

Theorem 2.1. Let & : I X Q — R be an n-convex stochastic process andn : A X B — R be the non-

decreasing non-negatively sub-linear in first variable. If T; = ), ajfori=1,2,..,nsuch that T, = 1,
j=1
then

n n—-1
f(Z @ix; ] < £ )+ ) Tile(his Kt s %) (2.2)
i=1 i=1

where 0:(Xi, Xis1s .oy Xn) = N(Ne(Xiy Xis1s ooy X1, ), E(Xp, ) and ng(x, ) = E(x, ) for all x € I.

Proof. Since 1 is non-decreasing, non-negatively, sub-linear in first variable, so from (2.1)

n n—1
S(Z @iXiy ) < E(Xn, ) + Ty (f [Z ;Lx,-) ; f(xn))
i=1

i=1 - n-l
T,, 53 « 1%

n-2 i n—1

=&(xy, )+ T | € Xi, + Xn—15 .),f(xn,.))
Tn—l ; Tn—Z Tn—l

n—-2
< é:(-xn, ) + Tn—ln(f(xn—l > ) + (;::?) n (‘f [; Ta/iz Xis é‘:(-xn—l > )] "f(-xn, )]

N

n-2
a;

Tn—2

< é:(-xn, ) + Tn—ln(é:(-xn—l ’ x.), é:(-xn’ )) + Tn—ZU(n (f[ Xis ] 7§(xn—1a ))’ é:(-xn’ ))

i=1
<

< (xn) + Tn—ln(é:(xn - 17 -)’ é‘:(xna )) + Tn—ZU(é:(-xn—Z, -)’ é‘:(xn—lv ))’ é‘:(xna ))
+. o+ Ti((xiCxy, ), 6(x2, ), 6(x3,) - - E(X-1,)), E(Xn, )

n-1
= f(xl’l? ) + Z Tinf(-xi’ XitlseosXns )
i=1

Hence the proof is complete. O
3. Hermite-Hadamard inequality

Now, we established new inequality for the n-convex stochastic process that is connected with the
Hermite—Hadamard inequality.
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Theorem 3.1. Suppose that ¢ : [c1,c2] X Q — R is an n convex stochastic process such that n is
bounded above &[cy, c;] X €[ c1, ¢3], then

C1+ ¢ 1 1 fcz
- =M, < ,)d
§( 2 ) 27" T - J, ¢y

1
< 5léler, )+ &(e, )]+

U(f(cl, -)’ f(c% )) + Tl(f(CZ, ~)’ g(cla ))
2

[\.)

p—

1
< 5leler )+ &ea, )+ 5 M, (3.1

where M, is upper bound of .

Proof. For the right side of inequality, consider an arbitrary point y = @ ¢ + (1 —ay)c, with a4 € [0, 1].
We can write as

£@, ) =&(aicr + (1 —ae), ).
Since £ is i convex stochastic process, so by definition
£, ) < &(ea, ) + am(é(cy, ), &(ca, )

with @; = £ It follows that

c1—c2

£y, .) < &(ca, )+( )Ti(f(q ), &(ca, 1))

Now, using Lemma 1.1, we get

© =D eter . &)

1 <2
f &(y, )dy
Cr—C1 Jg

1
£, ) < - (-f(cz, Jer—c) +

C1

1
< é‘:(CZ’ ) + 577(5(01, ')9 ‘f(CZ’ )) .

Also, we have

f £, )dy < &(c1, ) + U(S(Cz 2,€(c1,.).

Cyr — (1

Therefore, we get

Cy — C

f &0y, )dy<mln{§(62 )+ n(f(cl ), &(c2,.)),é(cr, ) +5 77(5(62 ), &(cis ))}

1
< Sl€(er, ) + &(ca, I + [(é(ers, ), E(ea, ) +11(E(ca, ), (e, )]

i \° ]

< 5lé(cr, ) + &(ea, )] + My,

\9}

where M, = [n(&(c1, ), €(c2, ) + n(€(ca, ), E(cr, )] -
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For the left side of inequality, the definition of r-convex stochastic process of & implies that

g(cl+(:z’.):§ cite _aln-c) a+o +al(62—cl)’.
2 4 4 4 4
_ 1C1+C2—CL’1(C2—C1)+1C1+CQ+C¥1(C2—C1)
=¢ 2 2 2 2 "
c1+cey+a(c—cy) 1 citeo—a(ca—cy) ley+c—ai(cy—cy)
< . _ , -
e P [Gale( ). 3
- 1
<[zt al C‘),.)+—M,, Voa €0,1].
2 2
Here
cir+c+ai(c—cp) S (c1+cz) 1M (@.e) (3.2)
> ,. > ¢ R > My a.e. .
and
c1+cy—a(c;—cyp) c1+co 1
£ . N ZS(T,.)—EM,, (a.e). (3.3)

Finally, using change of variable, we have

)

e 1 - <2
f &y, )dy = [ f E(y, )dy + f £(, .)dy]
Cr = C1 Jg Cy) — (1 1 %

1M [a+a—ala-c) ¢+ +ai(c—cp)
gl etsegeca

From (3.2) and (3.3), we get

1 <2 1 (! 1+ 1 c1+ 1
Dy 3 [ le(FE ) - My + - =M,||d
cz_clqu@”zfo[fz My +E( =) = 5 M, || den
1 ! Cc1+C 2
> — 2 o= =M, |d
‘2f0 [5( 2 ) 2 "] o
1 c)1t+ ) ]
> — |2 -M
_2[6( 2 7 !
>§(C1+C2 ) IM
> 7o)~ 3 My
Hence, the proof is completed. O

Remark 1. By taking n(x,y) = x — y in (3.1), we get the classical Hermite-Hadamard inequality for
convex stochastic process [7].
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4. Ostrowski type inequality

In order to prove Ostrowski type inequality for n-convex stochastic process, the following Lemma
is required.

Lemma 4.1. [I2] Let ¢ : I X QQ — R be a stochastic process which is mean square differentiable on

I°. If f’ is mean square integrable on [cy, c;], where ¢y, c; € I with ¢\ < c,, then the following equality
holds

— 2 )2 1
_xza) ftg’(tx+(1—z)c1,.)dt—uftg’(rx+(1—t)cz,.)dr,(a.e.),

- 0 C—C 0
4.1

&, .

for each x € [cy, c;].

Theorem 4.2. Let ¢ : I X Q — R be a mean square stochastic process such that & is mean square
integrable on [cy, ¢, where ci,c, € I with ¢y < c;. If |§'| is an n- convex stochastic process on I and
I€'(t, )| < M for every t, then

‘é:(t, ) - f(u, )du
Cy—C
RS Y RS , , Y
Y|me) ey } 4 O 0 L (e o)+ <2 (1 L€ (e D (ae)
2 C — () 3(cr—c1) 3(cr—cy)
Proof. Since |¢'| is an np—convex stochastic process, so by (4.1), we have
&, .
_ 2 Y
< ¢ oy f W Ot + (1= y)er, dy + 2D f YIE Ot + (1= y)ea, ldy
Cr —Cq C—C
(f —c1)? ( Cr — )2
[|§ (c1, )+ yn(E @, L 1€ (e, )|)] dy + [|§ () +yn(€ (8, ), € (ca, )|)]
Cyr — Cp
N 2 2 2 2
cp|zarr©@-D ] f yay + L= f V€ (LI er. e + 20 f YAIE (5 ) IE (e, D)y
Cr—Cy 0 C — €2~
M[(t=c))* +(ca—1) (t—c1)? , , (c2 —1)?
< > [ o ] + 3(cs = Cl)ﬂ(|§ @ I, & (cr, DD + 36 )77(|§ (@, ), 1€ (c2, ).
Hence proof is completed. m|

5. Conclusions

There are many applications of Stochastic-processes, for example, Kolmogorov-Smirnoft test on
equality of distributions [26-28]. The other application includes Sequential Analysis [29, 30] and
Quickest Detection [31, 32]. In this paper, we introduced n-convex Stochastic processes and proved
Jensen, Hermite-Hadamard and Fejr type inequalities. Our results are applicable, because the expected
value of a random variable is always bounded above by the expected value of the convex function of
the random variable.
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