AIMS Mathematics, 5(6): 5939-5954.
AIMS Mathematics DOI:10.3934/math.2020380
% : Received: 10 May 2020
o Accepted: 09 July 2020
http://www.aimspress.com/journal/Math Published: 17 July 2020

Research article

Several expressions of truncated Bernoulli-Carlitz and truncated
Cauchy-Carlitz numbers

Takao Komatsu'* and Wenpeng Zhang’

! Department of Mathematical Sciences, School of Science, Zhejiang Sci-Tech University,
Hangzhou, 310018, China

2 School of Mathematics, Northwest University, Xi’an, 710127, China

* Correspondence: Email: komatsu@zstu.edu.cn.

Abstract: The truncated Bernoulli-Carlitz numbers and the truncated Cauchy-Carlitz numbers are
defined as analogues of hypergeometric Bernoulli numbers and hypergeometric Cauchy numbers, and
as extensions of Bernoulli-Carlitz numbers and the Cauchy-Carlitz numbers. These numbers can be
expressed explicitly in terms of incomplete Stirling-Carlitz numbers. In this paper, we give several
expressions of truncated Bernoulli-Carlitz numbers and truncated Cauchy-Carlitz numbers as natural
extensions. One kind of expressions is in continued fractions. Another is in determinants originated
in Glaisher, giving several interesting determinant expressions of numbers, including Bernoulli and
Cauchy numbers.
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1. Introduction

L. Carlitz ( [1]) introduced analogues of Bernoulli numbers for the rational function (finite) field
K = FE.(T), which are called Bernoulli-Carlitz numbers now. Bernoulli-Carlitz numbers have been
studied since then (e.g., see [2—6]). According to the notations by Goss [7], Bernoulli-Carlitz numbers
BC, are defined by

x > BC,
= ", 1.1
ect) LT (b
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Here, ec(x) is the Carlitz exponential defined by
(¢S] xri
=) (1.2)
i=0 !

where D; = [i][i = 177---[1]" (i > 1) with Dy = 1, and [i] = T" — T. The Carlitz factorial T1(i) is
defined by

() = ]—[ DY (1.3)
J=0
for a non-negative integer i with r-ary expansion:
i=Y el (0<cj<n). (1.4)
=0

As analogues of the classical Cauchy numbers c,, Cauchy-Carlitz numbers CC,, ( [8]) are introduced
as

> CC,
T N (1.5)
logc(x) &4 1I(n)
Here, log(x) is the Carlitz logarithm defined by
loge() = (- D' (L6)

i=0

where L; = [i][i — 1]---[1] (i > 1) with Ly = 1.

In [8], Bernoulli-Carlitz numbers and Cauchy-Carlitz numbers are expressed explicitly by using the
Stirling-Carlitz numbers of the second kind and of the first kind, respectively. These properties are the
extensions that Bernoulli numbers and Cauchy numbers are expressed explicitly by using the Stirling
numbers of the second kind and of the first kind, respectively.

On the other hand, for N > 1, hypergeometric Bernoulli numbers By, ( [9-12]) are defined by the
generating function

1 xN/Nv -
- E Bya— 1.7
FIGN + Lx)  er— YNy N (1.7)

n=

where

N @™
lFl(aa sz) - ; (b)(n)a

is the confluent hypergeometric function with (x)®” = x(x + 1)---(x +n—1) (n > 1) and (x)© = 1.
When N =1, B, = B, , are classical Bernoulli numbers defined by

n

e")il :ZB"%'

n=0
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In addition, hypergeometric Cauchy numbers cy, (see [13]) are defined by

N-1 N b
! (VN S, (s

FULNN+1-2)  log(I+0) - S (~y-laijn 4

where

m (p)Ym 7"
2Fi(a,byc;z) = Z (a)(c)((n)) !

is the Gauss hypergeometric function. When N = 1, ¢, = ¢, are classical Cauchy numbers defined by

& n

X X
log(1+x) Z:; T

In [14], for N > 0, the truncated Bernoulli-Carlitz numbers BCy,, and the truncated Cauchy-Carlitz
numbers CCy, are defined by

rN o0
/Dy BCy,
= gl 1.9
ec(x) — YNV x" /D ; I1(n) (1.9
and P
W %0
(=17« /Ly = CCxn n (1.10)

loge(n) — XV (~Dixr /L, & Tl(n)

respectively. When N = 0, BC,, = BCy, and CC,, = CCy,, are the original Bernoulli-Carlitz numbers
and Cauchy-Carlitz numbers, respectively. These numbers BCy, and CCy, in (1.9) and (1.10) in
function fields are analogues of hypergeometric Bernoulli numbers in (1.7) and hypergeometric Cauchy
numbers in (1.8) in complex numbers, respectively. In [15], the truncated Euler polynomials are
introduced and studied in complex numbers.

It is known that any real number « can be expressed uniquely as the simple continued fraction
expansion:

1
a=ay+ " , (1.11)
a +
1
a, +
as + I
where q is an integer and a,, a,, ... are positive integers. Though the expression is not unique, there

exist general continued fraction expansions for real or complex numbers, and in general, analytic
functions f(x):

F0) = ag(x) + il (1.12)
- ba(x) ’ '
by(x)

as(x) + .

a(x) +

ar(x) +
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where ay(x),a;(x),... and by(x), by(x), ... are polynomials in x. In [16, 17] several continued fraction
expansions for non-exponential Bernoulli numbers are given. For example,

= X
D Bo(dx)' = (1.13)
n=1 X
I+=+
1 . 1 N X
2 3 1 1 X
3 4

More general continued fractions expansions for analytic functions are recorded, for example, in [18].

In this paper, we shall give expressions for truncated Bernoulli-Carlitz numbers and truncated Cauchy-
Carlitz numbers.

In [19], the hypergeometric Bernoulli numbers By, (N > 1, n > 1) can be expressed as

By, = (=1)"n!

N! 1
(N+1)!

N! N!
(N+2)! (N+1)!
N N
(N+n—1)!  (N+n-2)!
N! N!
(N+n)! (N+n-1)!

0

1
N!
N!

(N+2)!

0
1

N!
(N+1)!

When N = 1, we have a determinant expression of Bernoulli numbers ( [20, p.53]). In addition,
relations between By, and By_;, are shown in [19].

In [21,22], the hypergeometric Cauchy numbers cy,, (N > 1, n > 1) can be expressed as

N

N+1 1 0
N N
N+2 N+1
CNn = n! : 1 0
N N N 1
N+n-1  N+n-2 N+1
N N N N
N+n N+n—1 N+2  N+1

When N = 1, we have a determinant expression of Cauchy numbers ( [20, p.50]).
Recently, in ( [23]) the truncated Euler-Carlitz numbers ECy,, (N > 0), introduced as

XQZN /D2N - ECNn n
- = =T
Coshc(x) — B x0 /Dy 4 Tl(n)

are shown to have some determinant expressions. When N = 0, EC, = EC,, are the Euler-Carlitz
numbers, denoted by

X - EC, |,
_— = X s
Cosh¢(x) s I1(n)
where
[ 2i
X‘I
COShc(X) = D_
=0 2i
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is the Carlitz hyperbolic cosine. This reminds us that the hypergeometric Euler numbers Ey,, ( [24]),

defined by

N /(2N)! _iE X"
cosht — YN0 njamyt &4 nl”

have a determinant expression [25, Theorem 2.3] for N > 0 andn > 1,

(2N)! 1 0

2N+2)!
@n)! . . 0
Exan = (=1y'CQm)t| ®¥0
: : 1
evt . _eNL _eN)!
N+2n)! QN+H!  (2N+2)!

When N = 0, we have a determinant expression of Euler numbers (cf. [20, p.52]). More general cases

are studied in [26].

In this paper, we also give similar determinant expressions of truncated Bernoulli-Carlitz numbers
and truncated Cauchy-Carlitz numbers as natural extensions of those of hypergeometric numbers.

2. Continued fraction expansions of truncated Bernoulli-Carlitz and Cauchy-Carlitz numbers

Let the n-th convergent of the continued fraction expansion of (1.12) be

PO s bi(x)
Qn(x) bz(x)
a(x) + T
a(x by ()
"a,(x)

There exist the fundamental recurrence formulas:

Pn(x) = a,(X)Pp_1(x) + bn(x)Pn—Z(x) (I’l 2 1)7
(%) = an(X)Qp-1(X) + bu(X)On2(x) (n = 1),

with P_j(x) = 1, O-1(x) = 0, Po(x) = ap(x) and Qy(x) = 1.
From the definition in (1.9), truncated Bernoulli-Carlitz numbers satisfy the relation

[ ’.N-H'_',N o0 BC .
(%ZQMNZH$AZ1

i=0 n=0

Thus,

m N+i_ N

. 0u(9) =Dyn )

i=0

DN+m

Pp(x) = Dy

yield that

°°BCn
%m;H$ﬂ~mm (m — ).

2.1)

(2.2)
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Notice that the n-th convergent p,/g, of the simple continued fraction (1.11) of a real number « yields
the approximation property

1
lgna — pal < .
n+1
Now,
Po) _ 1 P e
Qo(x) 1 0i1(x) Dy, /Dy + xrve=r

and P,(x) and Q,(x) (n > 2) satisfy the recurrence relations

D n +n +n— D n— +n_ N+n—
Po(x) = [ 4 M Py () - 2L R ()
DN+n—l DN+n—2

D n +n +n— D n— +n_ N+n—
Qn<x>=(L+xr’v - ‘)Qn_l(x)—le” " 0 (%)
DN+n—1 DN+n—2

(They are proved by induction). Since by (2.2) forn > 2

DN+ +n_ N+n—1 DN+ -1 N+n_  N+n—1
St LA and b,(x) = ————x" 7

an(x) =
DN+n—1 DN+n—2

b

we have the following continued fraction expansion.

Theorem 1.
N+1_,N
& rY T —p
BCy, Y=1— X
H(n) D1 er+2_rN+1
n=0 Dy+1 oy Dy
Dy Dn.io er+3_rN+2
Do N2 N+ Dy+1
Dy 1 Dysy | oorN43—pNe2 _

Dy+2

Put N = 0 in Theorem 1 to illustrate a simpler case. Then, we have a continued fraction expansion
concerning the original Bernoulli-Carlitz numbers.

Corollary 1.

® r—1
BCy ., x
Xt=1-
2_
24 Tiw) D
Dl + x1 — )
&xr —r
Dy xrr - Di
D 3_,2
! g—z + x7r —

From the definition in (1.10), truncated Cauchy-Carlitz numbers satisty the relation

LN EDETTN SN COx L
N = .
pars Ly.i s II(n)

AIMS Mathematics Volume 5, Issue 6, 5939-5954.



5945

Thus,
Lyam O (=i
Pa0 = 0,0 = Ly
N Py N+i
yield that
On(x )Z H(N" X'~ Py(x)  (m— c0).
Now,
Po(x) 1 Pi(x) X
= 1 = -, = 1 + N+1_,N
Qo(x) 1 01(x) Ly /Ly —x"" 7"

and P,(x) and Q,(x) (n > 2) satisfy the recurrence relations

LN+ N+n _ .N+n-1 LN+ 1 rN-Hz rN+Vl 1
mm:( — X )mm L" P,_o(x)
N+n—1 N+n—2

L n yN+n_ N+n— n— r+n +n—
Qn(x)=(LN* — ‘)Qn () + D .

N+n—1 LN+n 2

Since by (2.2) forn > 2

LN+n_1 N+n_ ,.N+n—1
and b,(x)= ——x" 7 ,

LN+n—l LN+n—2

LN+,1 +n4 N+n-1
an(x) — _ er +r

we have the following continued fraction expansion.

Theorem 2.
o) rN+1_rN
ECh X'=1+ a
I1(n) Ly+1 er*z—rN”
=0 Ly _ V- 4 Ly
Ly Ly er+3_rN+2
Lyiy L pN+2_pN+l + L1
Lyt Lyi3 _ ypN+3 _pN+2 +
Ly+2 .

3. A determinant expression of truncated Cauchy-Carlitz numbers

In [14], some expressions of truncated Cauchy-Carlitz numbers have been shown. One of them is
for integers N > Oand n > 1,

n -1 ip+etig
COnu=tn YLy Y @3.1)
k=1

i senig 21 LN+iI T LN+ik

AR L SR,

[14, Theorem 2].
Now, we give a determinant expression of truncated Cauchy-Carlitz numbers.
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Theorem 3. For integers N > 0andn > 1,

—a) 1 0
ay —da| .
CCy,, = ll(n) : .o 0 s
: —a; 1
(-D'a, -+ - a —a
where ‘
(=1)'Ly6;
q=—"—" (=21
: Lyyi
with

1 ifl =N — N 1 =0,1,...);
52{ if 1= N N ) 42

0 otherwise.

We need the following Lemma in [27] in order to prove Theorem 3.

Lemma 1. Let {a,},>0 be a sequence with ay = 1, and R(j) be a function independent of n. Then

R(1) 1 0
RQ2) R
@, = : : R 0 |- (3.3)
Rn—-1) Rn-=2) --- R(1) 1
R(n) Rn-1) --- RQ2) R
if and only if
@ = Y (~D'R(Gan; (= 1) (3.4)
j=1
with ag = 1.

Proof of Theorem 3. By the definition (1.10) with (1.6), we have

- L i — CC,,
— Z(_l)l N er -V K"
pary Ly o 11(m)

—
|

[

—_—

I 8
=

Thus, forn > 1, we get

AIMS Mathematics Volume 5, Issue 6, 5939-5954.
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By Lemma 1, we have

cc, - CC,
=— a
n) ; !

IT( I[(n—-1)
- CC,y
= —1 -1 _1 R
;( M EDage s
—a) 1 0
ay —a
= 0
. —a) 1
-Da, -+ - a —a
O
Examples. When n = rV*! — ¥,
0 1
CCn+i_pn _ : ..
[N+ — V) - 0 1
D"y 0 - 0
N+1 N N+1 N _1 2N+1L
— (_1)r —r +1(_1)r —r ( ) N
LN+1
LN+1 '
Let n = rM*2 — V. For simplicity, put
v L
a= (_1)rN 1—}“1\](_1)2N+1 N ,
N+1
v L
a= (_1)rN 2—rN(_1)2N+2 N .
LN+2
Then by expanding at the first column, we have
0O 1 O
0
a
CCon+i_pn _ 0
[I(PN+1 = M) -
0
0 1
a 0 0O a 0 -0
————
rN+2_rN+1 rN+1_rN_1

AIMS Mathematics
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1 0 1

— (_1)1‘N+1—rN+la

1

e 0

—_— a —_—
pN+1_pN_1 . pN+1_pN_q
2
1 0
+ (_l)rN+2_rN+1& a
a
The second term is equal to
1y gyt
LN+2 LN+2
The first term is
0
a
(_1)rN+l—rN+la
1
0
pN+2_0pN+1 N yN+1_pN_q

AIMS Mathematics
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Therefore,

1
1 0 1
a
— (_I)Z(rNH—rN+l)a2
N——— a
pN+1_pN_1
2
01
_ N =N 41y =1
= (-1 a
0 1
a 0 0
JN+L_pN

— (_1)(r+1)(rN+1—rN+1)ar+1

r+1
— (_1)(r+1)(rN+1—rN+1)(_1)(rN+1—rN)(r+1)(_1)r+1 Ly
Lr+1
N+1
+1
_ Ly
ol
L1rV+l

CC,NH_,,N _ Lx—l LN

H(I’N+1 - I"N) L;\}Tl LN+2

yN+1_pN_q

From this procedure, it is also clear that CCy,, = 0 if ¥N*! — N t n, since all the elements of one
column (or row) become zero.

4. A determinant expression of truncated Bernoulli-Carlitz numbers

In [14], some expressions of truncated Bernoulli-Carlitz numbers have been shown. One of them is
for integers N > Oand n > 1,

[14, Theorem 1].

BCy, = () i(—DN)k >
k=1

i i1
AR L L S

DN+i| T DN+ik

! 4.1)

Now, we give a determinant expression of truncated Bernoulli-Carlitz numbers.
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Theorem 4. For integers N > 0andn > 1,

—d; 1 0
d,  —d
BCy,, = I(n) : e 0 |
: -d; 1
(-1)'d, d —d
where Dot
N
d, = (I=1)
: DN+1
with 6] as in (3.2).
Proof. The proof is similar to that of Theorem 3, using (1.9) and (1.2). O
Example. Let n = 2(#V*! — V). For convenience, put
- D
d=—1
DN+1
Then, we have
0 1
0
BCN’Z(,,NH_,,N) _ (z
H(z(”NJrl - ”N)) . 1
' g 0 - 0
—_ FN+L_pN_1
rN+l—pN 4]
1
: 0
— (_1)VN+1—VN+1 d 1
1
d 0
—_— N+ N _
pN+1_pN_1
01
— (_1)rN+l—rN+ld_
1
d 0
FNHL_ N
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— (_1)2(rN+l—rN+l)d_2

It is also clear that BCy,, = 0if M =V ¢ n.
5. Applications by the Trudi’s formula

We shall use Trudi’s formula to obtain different explicit expressions and inversion relations for the
numbers CCy,, and BCy,,.

Lemma 2. For a positive integer n, we have

a, aop 0

ar a

fo4 -+, -
. . _ Nty 1
: : o0 |F E ( (—ayp) ala; ---ay,

11 +200+-+nty=n hyeosln
an-1 o ar Qo

a, dp-1 -+ 4y Q4

! . . .
n J;t) = Wil e the multinomial coefficients.
~~~~~ n

where ( L

This relation is known as Trudi’s formula [28, Vol.3, p.214], [29] and the case ay = 1 of this formula
is known as Brioschi’s formula [30], [28, Vol.3, pp.208-209].

In addition, there exists the following inversion formula (see, e.g. [27]), which is based upon the
relation

D Fabn-=0 (r>1).
k=0

Lemma 3. If {«@,},s0 is a sequence defined by ay = 1 and

D) 1 0 a 1 0
n = D(.2) , then D(n) = ajz 0
: . . : . o1
D) --- DQ2) D(1) o, -+ @ @

From Trudi’s formula, it is possible to give the combinatorial expression

— hot-+i _1\rth——ty 51 .. In
a, = Z ( A )( 1 D(1)'D(2)2 - - - D(n)"" .

H+2t0++nt,=n

By applying these lemmata to Theorem 3 and Theorem 4, we obtain an explicit expression for the
truncated Cauchy-Carlitz numbers and the truncated Bernoulli-Carlitz numbers.
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Theorem S. For integers N > 0 and n > 1, we have

H+---+1 PP
CCy,=Tim) ) =1yt gt
H,..., 1,
1 +2t++nt,=n

where a, are given in Theorem 3.
Theorem 6. For integers N > 0 and n > 1, we have
H+---+1, P
BCy, = Il(n) Z ( ! )(—1)" 2~ ’ZWZJdT ceedi

H,..., 1,

H+2t++nt,=n
where d, are given in Theorem 4.

By applying the inversion relation in Lemma 3 to Theorem 3 and Theorem 4, we have the following.

Theorem 7. For integers N > 0 and n > 1, we have

CCw;
) 1 0
CCnp CCy,
1(2) TI(1)
a, = (D" . 1 0 |-
CCNn-t CCNn2 . CCnu 1
On-1) (-2 TI(1)
CCnn CCNn-1 . CCno  CCha
M(n)  Tn-1) n2 1)
where a,, is given in Theorem 3.
Theorem 8. For integers N > 0 and n > 1, we have
BCn,1
e 1 0
BCyp BCy,
T2 TI(T)
dn = (_l)n . 1 0 ’
BCnn-1  BCnnw2 . BCni 1
M(n-1) T(-2) TI(T)
BCyw  BCnpor | BCy2  BCni
() -1 ne 10

where d, is given in Theorem 4.
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