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number (β2(G)). For a tree T , we obtain 3

4β2(T ) ≥ γm(T ) and characterized all those trees which
attain the equality.
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1. Introduction

The problem of covering vertices (edges) by vertices (edges) has been widely studied in recent
years. The quests of covering: vertices by vertices, edges by vertices, vertices by edges and edges by
edges resulted into several significant problems in the area of graph theory. As a natural extension of
these problems, the domination of the vertices or edges by vertices or edges was introduced and studied
in [2, 3, 17, 18, 20].

Before proceeding further, we fix the notations used in this paper. For other notations and
terminologies, see [19]. We consider the simple and connected graphs G, denote a vertex set by
V = V(G), edge set by E = E(G) and the cardinality of V by n. Furthermore, we denote the open
(closed) neighborhood of a vertex v by N(v) ( N[v]), the number of neighbors of a vertex v by dv,
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children and descendants by C(v) and D(v), a tree by T , maximal subtree at v by Tv, the set of leaves
adjacent to v by Lv, pendant path by P, diameter by diam(G), path of order n by Pn, star of order n by
K1,n−1 and a double star, DS p,q is a tree containing exactly two non-pendant vertices, one of which is
adjacent to p leaves and the other is adjacent to q leaves. A pendant path P of a graph G is an induced
path starting from a leaf and containing only vertices of degree two in G as inner vertices. In addition,
the notions of degree of v, leaf, rooted tree and support vertex which will used in this paper are well
known in the literature.

For a graph G = (V, E), a vertex v mixed dominates its closed neighborhood and all edges incident
to v. An edge uv mixed dominate all the edges incident to u or v and the vertices u, v. A set D consisting
of vertices and edges of G such that each vertex and edge in G can be mixed dominated by an element
of D is called a mixed dominating set (MDS). Such a set with minimum cardinality is defined as γm-
set of G and its cardinality is called the mixed domination number γm(G). It is clear that the MDS
is a variant of dominating set which has been generalized to many other parameters, such as total
domination [22], Roman domination [16], semitotal domination [21, 23]. Several researchers studied
the problem of mixed domination (MD) in different directions such as: in [15], NP-completeness in
split graphs and a primal dual algorithm for MD problem were presented; some results related to MD
problem contributing toward electric power system have been obtained in [20]. For more literature on
mixed domination and related notions, see [2, 3, 14, 17].

On the other hand, the notion of k-independent set (k-IS), generalizing the notion of the independent
set, was introduced in [12] as: For a positive integer k, a set X ⊆ V is called k-IS if every vertex v in
the subgraph induced by vertices of X has degree at most k − 1. The k-independence number (denoted
by βk(G)) is the maximum possible cardinality of k-IS and such a set is called βk(G)-set. The results
on bounding and improvement of βk(G) may be seen in [13], [6] and [7]. Another aspect of βk(G)
which has been studied is its relationship with γk(G), for instance see [11]. In such relationships the
case β2(G) got especial attention, see [1, 4, 5, 9, 10, 16]. For more on k-independence we refer the
readers [8].

The following result can be found in [2].

Theorem 1. For a complete graph Kn, γm(Kn) = d n
2e.

The next result shows that there exist families of graphs such that γm(G) < β2(G) for a graph G in a
family and γm(H) > β2(H) for a graph H in another family.

Proposition 1. For any t ∈ N, there exist graphs Gt and Ht such that β2(Gt) − γm(Gt) = t and γm(Ht) −
β2(Ht) = t.

Proof. Let Gt = K1,t+1. Then clearly β2(Gt) = t + 1 and γm(Gt) = 1 and so β2(Gt) − γm(Gt) = t.
Now assume that Ht = K2t+4. We can see that β2(Ht) = 2 and by Theorem 1, γm(Ht) = t + 2. So
γm(Ht) − β2(Ht) = t. �

Motivated by the above proposition, the current work is devoted to investigations of relationships
between β2(G) and γm(G). Specifically, by keeping in view the importance of tress, we prove
3β2(T ) − 4γm(T ) ≥ 0 and characterize all trees T such that 3β2(T ) = 4γm(T ). Before proceeding
further, we include some definitions, notations and a lemma which will be used later. We start with
the following Remark.
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Remark 1. For any G and v ∈ V(G), γm(G) ≤ γm(G − v) + 1 holds.

Definition 1. Let u ∈ V ∪ E, and D ⊆ V ∪ E. The element u is said to be mixed dominated by D if u
belongs to D or is adjacent to a vertex v of D or is incident to an edge e of D. Let v ∈ V ∪ E. A set D
is said to be an almost mixed dominating set (AMDS) corresponding to v, if any element u ∈ (V ∪ E),
except possibly v, is mixed dominated by D. Take γm(G; v) the cardinality of an AMDS corresponding
to v with minimum possible elements.

We note that any mixed dominating set on G is an AMDS corresponding to any element of G.
Therefore, for any v ∈ V ∪ E the inequality γm(G; v) ≤ γm(G) holds.

Definition 2. For any G, we define W1
G as:

W1
G = {v ∈ V | γm(G − v) ≥ γm(G)}

and
W2

G = {v ∈ V ∪ E | γm(G; v) = γm(G)}.

Lemma 1. Let T ′ be a tree and u ∈ V(T ′). If T is a tree constructed from T ′ by adding a path
P6 = x6x5x4x3x2x1, and either joining u to x3 or joining u to x2, then β2(T ) = β2(T ′) + 4 and γm(T ) ≤
γm(T ′) + 3.

Proof. From any β2(T ′)-set, a 2-IS of T may be obtained by including x1, x2, x5, x6, and so β2(T ) ≥
β2(T ′) + 4. Moreover, for any β2(T )-set S , the equality |S ∩ {x1, x2, x3, x4, x5, x6}| = 4 holds and
S ∩ V(T ′) is a 2-IS of T ′, therefore β2(T ) ≤ β2(T ′) + 4. Thus β2(T ) = β2(T ′) + 4. Moreover, by adding
x1, x3, x5 to any γm(T ′)-set D we get an MD-set of T . Consequently, we get γm(T ) ≤ γm(T ′) + 3 as
desired. �

2. Results

The current section is devoted to the proofs of the main results which have been briefly described
in the previous section. To achieve this objective, we use T to denote a family includes all trees that
can be constructed by a sequences of trees T j, for j = 1, 2, . . .m (m ≥ 1) such that T1 = P6, and Ti+1 is
obtained from Ti recursively, by using the operations (Figure 1):
Operation O1. If u ∈ W1

Ti
, then O1 adds a path P6 = x6x5x4x3x2x1, and an edge ux3 to produce Ti+1.

Operation O2. If u ∈ W2
Ti

, then O2 adds a path P6 = x6x5x4x3x2x1, and an edge ux2 to produce Ti+1.

u ∈ W1
Ti

x3 x4 x5 x6

x2 x1

O1

u ∈ W2
Ti

x2 x3 x4 x5 x6

x1

O2

Figure 1. Two Operations O1,O2.
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Lemma 2. If Ti is a tree with γm(Ti) = 3
4β2(Ti) and Ti+1 is a tree obtained from Ti by Operation O1,

then γm(Ti+1) = 3
4β2(Ti+1).

Proof. By Lemma 1, β2(Ti+1) = β2(Ti) + 4 and γm(Ti+1) ≤ γm(Ti) + 3. Let D be a γm(Ti+1)-set. We have

k = |D ∩ {x1, x2, x3, x4, x5, x6, x1x2, x2x3, x3x4, x4x5, x5x6, ux3}| ≥ 3.

If u ∈ D or wu ∈ D for some w ∈ N(u) − {x3}, then the set D, restricted to Ti is an MDS of Ti and this
implies that γm(Ti+1) ≥ γm(Ti) + 3. Now let u < D and wu < D for every w ∈ N(u) − {x3}. Then the set
D, restricted to Ti − u is an MDS of Ti − u. We deduce from u ∈ W1

Ti
that γm(Ti − u) ≥ γm(Ti) and this

implies that γm(Ti+1) ≥ γm(Ti) + 3. Thus γm(Ti+1) = γm(Ti) + 3.
By the assumption γm(Ti) = 3

4β2(Ti), we obtain 3
4β2(Ti+1) = 3

4β2(Ti) + 3 = γm(Ti) + 3 = γm(Ti+1). �

Lemma 3. If Ti is a tree with γm(Ti) = 3
4β2(Ti) and Ti+1 is a tree obtained from Ti by Operation O2,

then γm(Ti+1) = 3
4β2(Ti+1).

Proof. By Lemma 1, β2(Ti+1) = β2(Ti) + 4 and γm(Ti+1) ≤ γm(Ti) + 3. Let D be a γm(Ti+1)-set. We have

k = |D ∩ {x1, x2, x3, x4, x5, x6, x1x2, x2x3, x3x4, x4x5, x5x6, ux2}| ≥ 3.

If u ∈ D or wu ∈ D for some w ∈ N(u) − {x2}, then the set D, restricted to Ti is an MDS of Ti and this
implies that γm(Ti+1) ≥ γm(Ti) + 3. Now let u < D and wu < D for every w ∈ N(u) − {x3}. If ux3 ∈ D,
then we can see that k = 4 and the result follows as above. If ux3 < D, then the set D, restricted to Ti is
an MDS of Ti corresponding to u and the assumption u ∈ W2

Ti
implies γm(Ti+1)+3 ≥ γm(Ti; u) = γm(Ti).

Thus γm(Ti+1) = γm(Ti) + 3. By the assumption γm(Ti) = 3
4β2(Ti), we obtain 3

4β2(Ti+1) = 3
4β2(Ti) + 3 =

γm(Ti) + 3 = γm(Ti+1) (Figure 2). �

γm(P6) = 3
β2(P6) = 4

O1

γm(T ) = 6
β2(T ) = 8

O2

γm(T ) = 9
β2(T ) = 12

O1
γm(T ) = 12
β2(T ) = 16

Figure 2. Trees obtained by applying a sequence of two operations.

Theorem 2. If T ∈ T , then γm(T ) = 3
4β2(T ).

Proof. Let T ∈ T , then by the definition of T , T can be constructed by using the operations O1 and
O2. Suppose T is obtained recursively by the sequence (Tk)

j
k=1. Now, we proof it by induction on j. If

j = 1, T = P6 ∈ T and the equality is true. Assume that the equality hold for T constructed from j − 1
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operations. Now, let T be a tree constructed from j operations, take T ′ = T j−1. Then T is constructed
from T ′ by either O1 or O2. Consequently, by applying the Lemmas 2- 3, we get γm(T ) = 3

4β2(T ).
�

Up to now, we have developed the sufficient results to prove the following main theorem of this
paper.

Theorem 3. For any tree T of order n, the inequality γm(T ) ≤ 3
4β2(T ) holds. Moreover, γm(T ) = 3

4β2(T )
if and only if T ∈ T .

Proof. We prove it by the induction on |T | = n.
If n ≤ 5, it can be observed that γm(T ) < 3

4β2(T ).
If n = 6, then with a simple verification, we see that γm(T ) ≤ 3

4β2(T ) and the only tree with γm(T ) =
3
4β2(T ) is P6 ∈ T .
Consider the case when n ≥ 7 and the statement is true for n − 1 or less. Then
If diam(T ) = 2, then T = K1,n−1 and we get γm(T ) = 1 < 3(n−1)

4 = 3
4β2(T ).

If diam(T ) = 3, then T = DS p,q (q ≥ p ≥ 1) and it can be verified that γm(T ) = 2 < 3
4β2(T ) as n ≥ 7.

Assume now, that diam(T ) ≥ 4 and let v1v2 . . . vd+1 denote a diametral path with the property that dv2

is maximum (possible). Root T at vd+1, then:
Case 1. If dv2 ≥ 3. Let k = dv2 . Take T ′ = T−Tv2 , then any β2(T ′)-set (and γm(T ′)-set) may be extended

to a 2-IS (and MDS) of T by adding k− 1 leaves adjacent to v2 (v2). Therefore β2(T ) ≥ β2(T ′) + (k− 1)
and γm(T ) ≤ γm(T ′) + 1. Consequently, the induction hypothesis yield,

3
4β2(T ) ≥ 3

4β2(T ′) + 3
4k − 3

4
≥ γm(T ′) + 3

4k − 3
4

≥ γm(T ) − 1 + 3
4k − 3

4
≥ γm(T ) + 3

4k − 7
4

> γm(T ).

Case 2. If dv3 ≥ 3.
Let v3 have t ≥ 1 children with depth 1, and ` ≥ 0 children with depth 0. If t ≥ 2, then let T ′ = T −Tv2 .
Suppose that xyv3 be a path in T with dy = 2 and dx = 1. Assume that S ′ be a β2(T ′)-set. If v3 ∈ S ′,
then |S ∩{x, y}| = 1 and S = (S ′−{v3})∪{v1, v2, x, y} is a 2-IS of T , and if v3 < S ′, then S = S ′∪{v1, v2}

is a 2-IS of T , so β2(T ′)+2 ≤ β2(T ). On the other hand, by including v2 in any γm(T ′)-set, we may get a
MDS of T . Therefore, γm(T ) ≤ γm(T ′) + 1. Therefore, the induction hypothesis yield 3

4β2(T ) > γm(T ).
Now let t = 1 and T ′ = T −Tv3 . Since deg(v3) ≥ 3, we have ` ≥ 1. Clearly, a 2-IS of T can be obtained
from any β2(T ′)-set by including all children and descendants of v3. So, β2(T ′) + 2 + ` ≤ β2(T ). On
the other hand, by including v2, v3 in any γm(T ′)-set, we may get a MDS of T . Therefore, we have
γm(T ) ≤ γm(T ′) + 2 and the induction hypothesis yield:

3
4β2(T ) ≥ 3

4β2(T ′) + 3
2 + 3

4`

≥ γm(T ′) + 3
2 + 3

4`

≥ γm(T ) − 2 + 3
2 + 3

4`

≥ γm(T ) − 1
2 + 3

4`

> γm(T ).
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Case 3. If dv3 = 2.
Considering Case 1 and the choice of diametrical path, we may assume that any child of v4 with depth
2, is of degree 2. We divide this case as:
Subcase 3.1 If dv4 ≥ 3. Let x1

1, x
2
1, . . . , x

k
1(k ≥ 1) be the children of v4 with depth 2, and v4xi

1xi
2xi

3 be

a path in T for 1 ≤ i ≤ k. Assume y1
1, y

2
1, . . . , y

t
1 be the children of v4 with depth 1, and v4y j

1y j
2 be a

path in T for 1 ≤ j ≤ t. Assume that v4 has ` children with depth 0. Let T ′ = T − Tv4 . Clearly, by
including all children and descendants of v3 except the children with depth 2 in any β2(T ′)-set, we may
get a 2-IS of T . Therefore, β2(T ′) + 2k + 2t + ` ≤ β2(T ). On the other hand, by including v4, xi

2, y
j
1 for

1 ≤ i ≤ k, 1 ≤ j ≤ t to any γm(T ′)-set, we get a MDS of T . Therefore, γm(T ) ≤ γm(T ′) + k + t + 1 and
the induction hypothesis yields,

3
4β2(T ) ≥ 3

4β2(T ′) + 3
2k + 3

2 t + 3
4`

≥ γm(T ′) + 3
2k + 3

4 t 3
4`

≥ γm(T ) − k − t − 1 + 3
2k + 3

2 t + 3
4`

= γm(T ) + k
2 + t

2 + 3
4` − 1.

If the equality holds, then we must have 3
4β2(T ′) = γm(T ′), and k

2 + t
2 + 3

4` = 1. Therefore k = t = 1 and
` = 0. Now we show that v5 ∈ W1

T ′ . If v5 < W1
T ′ , then γm(T ) ≤ γm(T ′ − v5) + 3 < γm(T ′) + 3 which is a

contradiction. Hence v5 ∈ W1
T ′ and T ′ with O1 produces T , thus T ∈ T .

Subcase 3.2 If dv4 = 2.
Let v5 have ` children with depth 0. Also assume that z1

1, z
2
1, . . . , z

t
1 be the children of v5 with depth

1, and v5zl
1zl

2 be a path in T for 1 ≤ l ≤ t, and let y1
1, y

2
1, . . . , y

k
1 be the children of v5 with depth 2,

and v5y j
1y j

2y j
3 be a path in T for 1 ≤ j ≤ k. Let x1

1, x
2
1, . . . , x

s
1 be the children of v5 with depth 3, and

v5xi
1xi

2xi
3xi

4 be a path in T for 1 ≤ i ≤ s. Considering above cases and subcases, we may assume that
all above paths are pendant paths. Take T ′ = T − Tv5 , then by including all children of v5 with depth
0, xi

1, x
i
3, x

i
4 for 1 ≤ i ≤ s, y j

2, y
j
3 for 1 ≤ j ≤ k, and zl

1, z
l
2 for 1 ≤ l ≤ t in any β2(T ′)-set we may get a

2-IS of T . Hence, β2(T ) ≥ β2(T ′) + 3s + 2k + 2t + `. On the other hand, let D a γm(T ′)-set. If ` = 0,
then by including xi

3, x
i
1v5, y

j
2, z

l
1 for 1 ≤ i ≤ s, 1 ≤ j ≤ k, 1 ≤ l ≤ t in D, we get an MDS of T . Hence

γm(T ) ≤ γm(T ′) + 2s + k + t and the induction hypothesis yield

3
4β2(T ) ≥ 3

4β2(T ′) + 9
4 s + 3

2k + 3
2 t

≥ γm(T ′) + 9
4 s + 3

2k + 3
4 t

≥ γm(T ) − 2s − k − t + 9
4 s + 3

2k + 3
2 t

≥ γm(T ) + 1
4 s + 1

2k + 1
2 t

> γm(T ).

If ` ≥ 1, then by including v5, xi
3, x

i
1v5, y

j
2, z

l
1 for 1 ≤ i ≤ s, 1 ≤ j ≤ k, 1 ≤ l ≤ t in D, we get an MDS of

T . Hence γm(T ) ≤ γm(T ′) + 2s + k + t + 1 the induction hypothesis yield:

3
4β2(T ) ≥ 3

4β2(T ′) + 9
4 s + 3

2k + 3
2 t + 3

4`

≥ γm(T ′) + 9
4 s + 3

2k + 3
4 t + 3

4`

≥ γm(T ) − 2s − k − t − 1 + 9
4 s + 3

2k + 3
2 t + 3

4`

≥ γm(T ) + 1
4 s + 1

2k + 1
2 t + 3

4` − 1
≥ γm(T ).
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If the equality holds, then we must have 3
4β2(T ′) = γm(T ′), and s

4 + k
2 + t

2 + 3
4` = 1. Therefore k = t =

0, ` = s = 1. Finally, we show that v6 ∈ W2
T ′ . If v6 < W2

T ′ , then γm(T ) ≤ γm(T ′; v6) + 3 < γm(T ′) + 3
which is a contradiction. Hence v6 ∈ W2

T ′ and T ′ along with O2 produces T . Thus T ∈ T and the proof
is completed. �

3. Conclusion

In this research paper, we consider the problem of 2-independent set and mixed domination in trees
and we proved that for any tree T , 3

4β2(T ) ≥ γm(T ). Also we characterized all those trees which attain
the equality. As a future study, it is interesting to investigate this problem in the classes of unicyclic
graphs and bicyclic graphs, and so on.
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