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1. Introduction

It is well-known that the Jensen inequality [1-3] for convex function is one of the most famous and
important inequalities in the whole theory of inequalities. Recently, the generalizations and
improvements for the Jensen inequality have been the subject of much research, it has been
generalized to the s-convex [4], co-ordinate convex [5], ¢-convex [6], a(x)-convex [7] and strongly
convex functions [8]. It is worth noting that it is closely related to many other important inequalities
such as Cauchy-Schwarz inequalities [9], Ostrowski inequalities [10], Minkowski inequalities [11],
Hermite-Hadamard inequalities [12—17], Bessel function inequalities [18], Petrovi¢ inequalities [19],
Pdlya-Szego inequalities [20], exponentially convex inequalities [21], integral inequalities [22-27],
mean value inequalities [28-32], gamma function inequalities [33], generalized convex functions
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inequalities [34], generalized trigonometric functions inequalities [35] and so on. The Jensen
inequality can be stated as follows.
The inequality

w(ZZLI éjyj) L 2 ¥0) (1.1)

214 214
holds forally; € I'and {; >0 (j =1,2,...,n)if  : I — R is a convex function.
The Jensen inequality (1.1) has wild applications in many fields of natural sciences, for example, in
optimization theory, statistics, information theory and financial economics [36-38].
The main focus of this article is to present several refinements of the generalized Jensen’s inequality
for the isotonic linear functionals. Before giving Jessen’s and McShane’s results, we consider the
following hypothesis and recall a definition.

Hypothesis H: Suppose that M is a non empty set and L is the class of real-valued functions
f : M — R such that

(i) ai1g1 +arg, € Lif g1, 8 € Land ay,a; € R;
(i) ge Lif g(z) = 1 forall z € M.

Definition 1.1. The functional G : £ — R is said to be an isotonic linear functional if it satisfies the
following two conditions:

() Gla1g1 + a282) = a1G(g1) + axG(g2) for g1, 8, € Ly, an €R;
(i) ge L,g(t) 20on M = G(g) > 0.

In 1931, Jessen [39] constructed the functional version of the Jensen’s inequality for convex
functions with one variable. In the following Theorem 1.1, we present an weighted version of the
Jessen’s inequality.

Theorem 1.1. Let the hypothesis H be true, G : £ — R be an isotonic linear functional and ¢ :
[a,b] — R be a continuous convex function. Then for all f,9 € L such that $hy(f),?f € L and

G@) > 0, we have % € [a, b] and

(1.2)

y (g(ﬁf)) _ GO
G )~ 6

Inequality (1.2) has been applied to obtain the monotonicity of generalized means. We present those
results for means as follows.

Let r € R. Then the generalization of the classical mean M, (¢, f; G) for isotonic functional G is
defined by

1
GarH\r
M9, :G) = {( 6 r# 0

G@log /) _
eXp( ZE) ) r=0,

where f(x) > 0forx e M, ¢, 9f" € Lforr e R, %log f € L and G(1I) > 0.

(1.3)

The following Theorem 1.2 for the monotonicity of the above generalized mean can be found in the
literature [40].
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Theorem 1.2. Let the hypothesis H be true, f, ¢ be the functions defined on M such that f, ¢, f",9f" €
L (r € R)and f(x) > 0 for x € M, and G be an isotonic linear functional defined on £ such that
G() > 0. Then the inequality

M9, f;G) 2 M,(0, [ G) (1.4)
holds for all p < I.

Let, h : [a, b] — R be the functions such that 4 is strictly monotone and continuous, and 94(f) € L
for f € L with f(x) € [a, b] and G(}) > 0. Then the generalized quasi arithmetic mean is defined by

GOh(f )))
6@ )

The following Theorem 1.3 on the monotonicity of the generalized quasi arithmetic mean is given
in [40].

M@, f;G) = h™! ( (1.5)

Theorem 1.3. Let the above hypotheses hold and g : [a,b] — R be a strictly monotone and continuous
function such that ¥g(f) € L for f € L with f(x) € [a, b] and G(¢}) > 0. Then one has

My, f:G) =2 My, [, G). (1.6)

if g o h™!is a convex function.

In 1937, McShane [41] extended the above functional version of Jensen’s inequality from convex
functions with one variable to the convex functions with several variables. The following Theorem 1.4
is a weighted version of McShane’s result.

Theorem 1.4. Let the hypothesis H be true, G : £ — R be an isotonic linear functional, C be a convex
closed subset of R”, i be a convex and continuous function defined on C, ¢{(x), ¢»(x), ..., ¢,(x), F(x)
be the functions from £ such that ¢(x) = (¢(x), ¢2(x), ..., d,(x)) € C for all x € M, I (P(x)),Ip; € L
(i=1,2,...,n) and G() > 0. Then one has

w(g(ﬂ(ﬁl) G(10¢,) Q(ﬁsbn))
Gw = Gw» T G

1

The following generalization of Beck’s inequality can be found in the literature [40] by using
McShane’s inequality.

Theorem 1.5. Let the hypothesis H be valid, G : £ — R be an isotonic linear functional, ¢; : I; - R
(i =1,2,...,n) be continuous and strictly monotonic, 7 : I — R be continuous and increasing, and
81,82, ---,8 - M > Randy : I} XxI, X---x1I, = R be the real-valued functions such that g;(M) C I,

gZ(M) C 127 R gn(M) c In’ wl(gl)’ wZ(gZ)’ R '//n(gn),‘f'(‘ﬁ(gl,gz, v 7gn))’ VS L and g(ﬁ) > 0. Then
the inequality

U (M, (9,81:6). Myy(8.82:6). ..., My, (0.8:6)) = Mc(®, (81, 82v.. 81 G)  (18)

holds if the function H defined by H(s, s, ..., $,) = =17 (51), 45" (52), . .., ¥, (s,)) is convex.

Remark 1.1. It is important to note that Beck [42] gave the special case of Theorem 1.5 for discrete
functionals with n = 2.
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The main purpose of the article is to refine the Jessen’s and McShane’s inequalities associated to
certain functions from the linear functions space, improve the generalized means, Holder and
McShane’s inequalities, and generalize the Jessen’s and McShane’s inequalities containing n certain

functions.
2. Refinement of Jessen’s inequality with applications

We first present a refinement of the Jessen’s inequality.

Theorem 2.1. Under the assumptions of Theorem 1.1, if u,v € £ such that u(¢) + v(t) = 1 fort € M

and ud f, vi f, ud, vi* € L with G(u?), G(v}) > 0, then

w(g(ﬁf )) L Gwd) w(g(uﬂf )) L G0 w(g(vﬁf )) < GW()
G )~ 6 "\ Gwd) | G0 "\ Gud T GW)

Proof. It follows from u(t) + v(t) = 1 for t € M and the linearity of G that

w(g(ﬂf)) _ l//(g((u + V)ﬁf))

) ()
_ w(ﬁ(uﬁf) N Q(vﬁf))
GO G

_y (Q(m?) Gudf)  GO9) Gif ))
g0 Ggud) G GI)

and

Gut) GO _ Gud +vd) _ G _
Go) 6w 6w  ¢®

Making use of the convexity of ¢ on the right hand side of inequality (2.2) we obtain

w(g(ﬂf )) L Gu) w(Q(uﬁf )) L G0 $(§(Vﬁf ))
G() g0 \ Gud) )] G@&) "\ GgOvI)

Applying Jessen’s inequality (1.2) on both sides of inequality (2.3), we have

Gwi) (Q(m?f )) L G0 w(g(vﬁf ))
g "\ gud) ) G©&)  \ GOd)

o GWd) Guy(f) GO GOI(f))
- G0 Guv) g Gvo)

_ Gwiu(f) | GOt _ GO
G0 G0 GO

Therefore, inequality (2.1) follows from inequalities (2.3) and (2.4).

2.1

(2.2)

(2.3)

(2.4)

O
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From Theorem 2.1 we get Corollary 2.1, which is the refinement of inequality (1.4).

Corollary 2.1. Let the hypothesis H be valid, f,#, u,v be the functions defined on M such that
0 u, v, ud, v, ud f", vﬂf’ﬂf’ € L(reR)and f(x) > 0 for x € M, G be an isotonic linear functional
on L such that G(19), G(u}), GV > 0, u(x) + v(x) = 1 for x € M, p,l € R with p < [. Then one has

M@, £;6) > | Mi(9, 1, )M, (b, £ G)

+ M@, v; )M, :6)|' = My, £ 6) (2.5)
forl # 0,
M(®, £;G) > exp (M (8, u; G) log M, (u, f; G)
+ M\(®,v;6)log M, (v, £, G)) = M, (D, f; ) (2.6)
for p <0,
M9, f; Q) < | Mi(®, 1; ))M! (b, £ G)
+ M@, v; M0, ;D] < M@, f;6) 2.7)
for p # 0, and
Mo(®, £;G) < exp (Mi(9,u; G) log Mi(ud, f; G)
+ M (8,v;G) log Mi(vd, f;G)) < M(®, £ 6) (2.8)
for [ > 0.

Proof. Let p,l # 0. Then using (2.1) for ¥(z) = z% (z > 0), f — fP and taking the power % we get
inequality (2.5).
Next, we prove inequality (2.6) by taking limit / — 0 in (2.5). Let

B(l, p, 9, u,v, ;G) = My (0, u; G)M,w, [ G) + My (D, v; M, (v, f; G).
Then it follows from linearity of G and u + v = 1 that

G  G@v)

B, p,d,u,v, f;G) = Mi(J,u; G) + Mi(9,v; G) = 2@ T oo
_GWw +G@0v) _ GWOu+v)) _ |
G(9) G '
Let
K(,B) = (B, p. 9, u,v, [;6))" .
Then

log B(I, p, %, u,v, f;G)

log(K(l, B)) = ;

Taking [ — 0 and using I’Hopital rule we obtain

limlog(K(l, B)) = Mi(9,u; G) log M, (ud, {1 G) + M1 (9, v: G) log M, (v, f; G),
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that is
lim K (1, B) = exp (M (@, u: @) log M, (u, £+ G) + My (B, v: G) log M,(v9, f: G)). (2.9)

Taking [ — 0 1in (2.5) and using (2.9) we obtain the desired inequality (2.6).
Similarly utilizing inequality (2.1) for ¥(z) = z7, (z > 0, p,l #0), f — f'and taking power ;17 we
get (2.7). Taking p — 0 in (2.7) leads to (2.8) |
As an application of Theorem 2.1, we derive an refinement of inequality inequality (1.5).

Corollary 2.2. Let all the above hypotheses hold, g : [a,b] — R be a strictly monotone and continuous
function such that 9g(f) € L for f € L with f(x) € [a, b], u,v € L such that u(x) + v(x) = 1 for x e M
and G(1), G(u?), G(v?) > 0. Then the inequality

M@, £:6) 2 g7 (M9, u; §)g(My(Bu, f; 3))

+ Mi(9,v; G)g(M (v, f; Q))) > My(9, 1 G) (2.10)
holds if g o 47! is a convex function.
Proof. Inequality (2.10) can be derived by use of inequality (2.1) for f — ho fandy — goh™'. O
As applications of Theorem 2.1, we present the refinements of the Holder inequality in the following
Corollaries 2.3 and 2.4.

Corollary 2.3. Let the hypothesis H be valid, G : £ — R be an isotonic linear functional, r; > 1,
r 1 wv,w,gr and g be non-negative functions defined on M such that
wgl, wgy, uwgy, vwgy' , uwgi 82, vwgi82, wg182 € L and u(x) + v(x) = 1 for x € M. Then

Gwgi) < 6% wg) {(Gme)) ™ (Gluwgig)”

+(Gowes) " Gowgig)”

<G (wgHG? (wgy). (2.11)
rl’ll with G(wg7) > 0 or r; < 0 and G(wg}') > 0, we have

Inthecase of 0 < ry < landr, =

Gwg182) = G (uwgP)GT (uwg!') + G7 (Wwg)GT (vwg!)

> G (wg!)G7 (wgl). (2.12)

-ry
2,7

Proof. Assume that G(wg7') > 0. Since wg g, g? =wgig € Land wgig|'g;” = wg|' € L, therefore
52

by using Theorem 2.1 for y(z) = 2" (z> 0,1 > 1), 9 = wgl’, f = gngT, we obtain inequality (2.11).
If G(wg|') > 0, then applying the same procedure but taking ry,7», g1, &> instead of r,, 7|, g2, 81, we
also obtain inequality (2.11).

AIMS Mathematics Volume 5, Issue 5, 4931-4945.



4937

If G(wgy) = G(wg}') = 0, then as we know that

0<wgg < lwg{1 + lwggz. (2.13)
r r
It gives that G(wg,g,) = 0. The proof for the case r; > 1 is completed.
IfO<r <1,then M = % > 1, and the desired result can be obtained by using (2.11) for M,
N=(1-r)"2 = (518", and g, = g," instead of ry, r, g, and g,
Finally, if r; < 0, then 0 < r, < 1, we may use the similar arguments with ry, r», g, g» replaced by
r, 1, &2, &1 provided that Q(wg?) > ( to get the desired result. O

Corollary 2.4. Let the hypothesis H be true, G : £ — R be an isotonic linear functional, r; > 1,
) = rl’ll, u,v,w,g and g, be non-negative functions defined on M such that

wgl', wgy, uwgy, vwgs' , uwg i8>, vwgi182, wg18» € L and u(x) + v(x) = 1 for x € M. Then

G(wg182) < G (uwg!HG7™ (uwgl) + G (vwgHG= (vwgl)

< G (wg!G (wgp). (2.14)

rn
rl—l

Inthe case of 0 < r; < land ry = with G(wg7) > 0 or r; < 0 and G(wg|') > 0, we get

G (wgNG (wg)

1 1-r;
<G (wgy {(Q(uwgg2 ) (Gluwgig))"

1
1

+(G0wg) " owgig)' | < Gongige) (2.15)

Proof. If G(wgy) > 0, then let y(z) = —zﬁ (z > 0,r; > 1), we clearly see that the function ¢ is
convex. Therefore, using Theorem 2.1 for (z) = —z%, ¢ = wgy and f = g|'g,” we obtain (2.14). If
G(wg}') > 0, then applying the same procedure but taking |, r», g1 and g, instead of r,, ry, g, and g;
we also get (2.14).

For the case of G(wgy) = G(wg|') = 0, we can complete the proof by use of the similar argument
as in the proof of Corollary 2.3.

If0O<r <1,then M = % > 1 and applying (2.14) for M and N = (1 — )™}, g, = (g12)" and
8, = g, ' instead of ry, 5, g1 and g, we get (2.15).

Finally, if r; < 0, then 0 < r, < 1, and we can get the desired result if we use the same method as
above but instead ry, r,, g, and g, by r», ry, g> and g; provided that fa b W(Q)g? (0)do > 0. O

Remark 2.1. In the above results if we consider G(¥g) = j; b p(x)f(x)dx and G(¥) = fa ’ p(x)dx, then
we obtain the results presented in [43], where p, g : [a,b] — R are integrable functions with p(x) > 0
for x € [a, b].
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3. Refinement of McShane’s inequality with applications

We begin this section by giving a refinement of the McShane’s inequality.

Theorem 3.1. Under the assumptions of Theorem 1.4, if u,v € £ such that u(x) + v(x) = 1 for x € M
and M (P(x)), udg;, vig, ud,vt e L([i=1,2,..., n) with G(u®), G(v¥) > 0, then

w(gwcm) GWs) Q(zwn))

GO 60 6w
_ Gwd) w(@(uﬁm g(uﬂ¢n>)+ Goo) w(gmwl) GO,
TG0\ Gwy) " gwy) | 6@\ 6w T G0
1
< —— GO (1. 2. ). (3.1)

- G()
Proof. It follows from the convexity, (1.7), u(x) + v(x) = 1 for x € M and the linearity of G that

w(gwcpl) GWs) Q(ﬁqbn))

I I I
_ ¢(g<uﬂ¢1> L G009) G g(mwn))
6@ 6™ U Tew | 6w

_ w(@(uﬂ) Guidg) GONHGWIP) — Guh) Gudp,) GvI) Q(Vﬁ%))
6w Gud) G Gwd) B T GW Guh G GO

y (gwm (g(uﬂ¢1) g(uﬂ¢n>)+ Gw) (gwﬂam ) g(vﬂrpn)))

GO\ Gwd) " Gwd) | 6w \ g GO
_ Guud) w(@(uﬁgbl) g(uﬂ¢n))+ G(v9) w(@(vﬁm g(vﬂqsn))
TG T\ 6w T ewd) )T 6w T\ 6o T G
1 1
< %Q(uﬂlﬁ(%,%,“' , Pn) + %Q(Vﬁlﬂ(qﬁl,%r“ s &)
1

- g(ﬁ)g(ﬂ‘ﬁ@h’ ¢2’ T ¢n)

The following Theorem 3.2 provides a refinement of the generalized Beck’s inequality (1.8).

Theorem 3.2. Let the hypothesis H be valid, G : £ — R be an isotonic linear functional, y; :
I, - R@G=12,..., n) be continuous and strictly monotonic, 7 : I — R be a continuous and
increasing function, g,82, - ,8, : M > R, ¢ : I} X I, X --- X I, — R be the real-valued functions
such that g;(M) C I, g2(M) C L, ---, g,(M) C L, ¥1(g1), ¥2(g2), -+, ¥ulgn), T(W(g1, 825 - -+ gn))

u, v, u, v € L, u(x) + v(x) = 1 for x € M and G(1), G(u), G(vi¥) > 0. Then
U (My, @, 81:6), My, (8, 826, ..., My, (9, 84 G))
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> T‘l[gg((ug)r(w (My, 9, 813 6), -+, My, (9, 2,3 6)))
+gg((vl;?T(lﬁ (M¢1(v0,g1;§),"‘ ,Mwn("ﬂ’g”;g)))]

> M‘r(ﬁ’ w(gl’ 8254 gn)»g) (32)
if the function H defined by H(sy, 52, , $,) = =17 (s1),¥5'(52), - -+ , ;' (5,)) is convex.
Proof. Applying Theorem 3.2 for the function H instead of ¢, we obtain

-1 g(ﬂ¢l) -1 Q(ﬁ¢2) -1 g(ﬂ¢n)
T(‘”(‘“ (% ( G ) """ Vi ( G )))

Gud ([ (gmﬁcm)) L (gw«zsn))))
260 " ('” ('”1 can " g
o ([ (gmwl)) L (g(vﬂasn))))
6 T(‘” (‘”1 Goo) | Yo'\ g0
> %gw WW @0).05"Ba). -+ 0 (B, (33)
Letg;, =yi(g) (i=1,2,..., n). Then (3.3) becomes

7 (0 (My, (9, 81:6), My, (3,83 6), - - My, (9,3 9)))

Gud)
> Gy T (Mo (0, 21:G), - My, (B, 12 9))
G(vi)
) TV (Mo, (00,856, My, (v8 15 G)))
> %Q( (Y (81,825 - - - gn))s (3.4)
which is equivalent to (3.2). O

A refinement of the Beck’s inequality is given in the following Corollary 3.1.

Corollary 3.1. Under the assumptions of Theorem 3.2 for n = 2, we have the following inequalities
v (My, (9.81:0). My, (8. 82: G))

S T_l[g(m?)

G

Gv)
)

(v (My, 9, 81 6), My, (8, 23 G)))

7 (v (My, (v9. 81: G). My, (v, gz;g)))]

> M-(9,¥(81,82);G) (3.5)
if the function H defined by H(sy, 52) = —t(¥ (" (s1), ¥, (52)) is convex.
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Next, we discuss some particular cases of Corollary 3.1.

Corollary 3.2. Let all the assumptions of Theorem 3.2 hold for n = 2 with ¥(z;,2,) = z1 + 22, and
Y1, ¥, T be the twice continuous differentiable functions such that ¢, ¥/, 7/, ¥, ¥ and " are positive.
Then the inequality

My, (9,81:G) + My, (9,82, G)
> T—l[g(uﬁ)

o) " (Mo B, 81:G) + My, (8, 3. G))

G9)
6

7(My, (0, 81:G) + My, (v, gz;@)]

> M9, 81 + 826 (3.6)
holds if G(z1) + H(z2) < K(z1 +22), where G = 5t H = 22 and K = &,
1 2
Proof. The idea of the proof is similar to the proof of Corollary 3.2 given in [44]. O

Similar to the idea of Corollary 3.2, we state the following Corollary 3.3.
Corollary 3.3. Let all the assumptions of Theorem 3.2 hold for n = 2 with ¥(zy,22) = 2122, ¥1,¥2, T

be the twice continuous differentiable functions and L,(z) = WZ‘Q—:;(Z), Ly(z) = % Ls(z) =
1 1 2 2

= (Z)T+(ZZT) 5 such that ), v, ', 7, y{', ¥y, Ly, Ly, Ls are positive. Then the inequality
Mlﬂ] (ﬂ’ gl 5 g)Mlﬂz(ﬁ‘9 82’ g)

. [Q(uﬂ)
2T

G " (Mo, 81:G) My, (0, 82:.6)

L GO0)
()

T (Mwl v, g1: GIM,, (v, g2, Q)) ]
2 M‘r(ﬁ’gng;g) (37)
holds if Li(z)) + Lx(z2) < L3(z122).

4. Further generalizations

The following Theorem 4.1 provides further generalization for the refinement of the Jessen’s
inequality associated to n certain functions.

Theorem 4.1. Let all the assumptions of Theorem 1.1 hold, u; € L such that i w =1and udf,ud €
=1
L with Gu®) > O foralll € {1,2,---,n}, and §;,S, c {1,2,...,n} such that S; and S, are non

empty, S NS, =0and S; US, ={1,2,...,n}. Then one has

Q(Z uﬂ?) Q(Z uzﬁf)
<

" (Q(ﬁf )) =3 168,
N )
(0)) E(0)) g(l% ulﬂ)
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J 0
¢ (1592 " ) ¢ (zgsz s ) )

v <
9 9
G(@) g( ) G

Z ulﬁ

€S,

Proof. It follows from the linearity of G, >, u; = 1, Jessen’s inequality and the definition of the
i=1

convexity that

g( 5 u,ﬁf) g( > udf+ ¥ uzﬂf)
w(g(ﬁf)) _y i=1 _y 1€S, €S>

G | G(9) G()

Q(Z u,ﬁf)+g(2 uzﬁf)

leS) €S,

G()

Q(Z ud Q(Z uzﬁf) Q(Z uﬂ?)Q(Z u,ﬂf)

_ €S €S €S, €S,
) )
G Q(Z uzﬂ) G Q(Z uzﬁ)
€S €Sy

and

oo it felz ) olee) fol o)

+ Y
) ) )
G() G() Q(Z uﬂ?) G(9) Q(Z uzﬂ)

€S €Sy

Q(Z uzﬂ)Q(Z uﬂ‘}tﬁ(f)) “qp uzﬂ)Q(Z uzlw(f))

1631 lESl ZESZ 1682
+

<
B g 7
G(®) g( G g(

Z Mﬂ?)

lES]

Z I/t[l?)

1632

Q(Z uzﬂtﬁ(f)) Q(Z uzﬂlﬁ(f))

1651 1682

+
G(®9) G()

€S

D, 9
_Q(Z U w(f)+l§92uz lﬁ(f)) _ g

G(9) )

O

Similar to the above Theorem 4.1, in the following Theorem 4.2 we give further generalization of
the McShane’s inequality.
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Theorem 4.2. Let all the assumptions of Theorem 1.4 hold, u; € £ such that ) u; = 1 and w9y ($(x)),
I=1

Vi (P(x)), ud¢;, upd € L with G(u;9) > 0 forall l € {1,2,--- ,n}, and S; and S, are non empty and
disjoint subsets of {1,2,--- ,n} such that S; US, ={1,2,--- ,n}. Then

w(gwaﬁl) GWe) Q(ﬂcpn))
Gw = Gg® T GO
< 2es, g(uzﬂ)d/(Zzesl G(udey) DS, g(ulﬁ%))
B G() Yies, Gu®) T 7 Yies, Gud)
N S, Q(Vﬂ?)w (stz G(viigy) o DS, Q(Vzﬁ%))
G ZleSz Gvid) ’ ’ ZIESQ G(vd)
1
< %g(ﬂlﬁ(%, $as ..., ®n)).
Proof. Tt follows from (1.7), >, u;(x) = 1 for x € M, the linearity of G and the definition of the
convexity that

lp(g(ﬂfﬁl) G(i,) Q(ﬁ%))
G = G T G
_ l//(ZIESI Guiey) N 2ies, Gviddr) 2ies, Guwdey) N 2eS, Q(Vﬂ?(ﬁn))
G9) G(9) C G(9) ()
_ l/’( 2ies, Gud) Yies, Gude) N 2es, GV Yies, Gviddy) o
G 2ies, Gud) G(d) Yies, Gid)
2ies, Gur?) Yies, Guip,) N 2es, GVid) Yes, Q(Vﬂ?(ﬁn))
G(9) 2ies, Gud) G 2ies, G
[ 2ies, Guid) (Xies, Gudd) GRles, Mlﬂfﬁn))
- "’( G) ( Sies, G " Ties, Gurd)
N 2es, Gvid) (21682 Gviigy) o DS, Q(Vlﬁ%)) )
G ZleSz G(vid) ’ ’ 21682 G(vd)
< 2es, Gupd) (ZleS. Guidey) e, g(ulﬂ%))
B (0)) Yies, Gud) T 2ues, Gud)
N 2ies, Gvid) " (Zzesz GOi¢) s, Q(Vﬂ?%))

G®) s, GO 7 Ties, GO
1 1
< mg[g u(p1, 1, .. . m)] + %Q(ZZS“ Vi (1, b1 .. ¢>n>]
1
= %Q(ﬁlﬁ(fﬁl,fﬁz, L))

O

Remark 4.1. Analogously as in the section 2, we may give some applications of Theorems 4.1 and
4.2.
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