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1. Introduction

P. Cohn [3] proved that the automorphisms of a free Lie algebra with a finite set of generators are
tame. The tameness of the automorphisms of polynomial algebras and free associative algebras in two
variables is well known [2,6,9,10]. It was proved [13,15] that polynomial algebras and free associative
algebras in three variables in the case of characteristic zero have wild automorphisms. For example the
Nagata automorphism [11,13] is a wild automorphism of a free Poisson algebra in three variables. Let
∆ = {δ1, . . . , δm} be a basic set of derivation operators and R{x1, x2, . . . , xn} be the polynomial algebra
in the variables x1, x2, . . . , xn over a differential ring R. The basic concepts of differential algebras can
be found in [1,5,7,8,12,14]. The tameness of automorphisms of differential polynomial algebras is
studied by B. A. Duisengaliyeva, A. S. Naurazbekova and U. U. Umirbaev [4]. They have proved
that the tame automorphism group of a differential polynomial algebra over a field of characteristic
0 in two variables with m commuting derivations is a free product with amalgamation. In this paper
we give some important subgroups of the group of differential automorphisms of R{x, y} with one
derivation operator. Furthermore using the method in Essen [16], we prove that the Tame subgroup of
automorphism of R{x, y} is the amalgamated free product of the Triangular and the Affine subgroups
over their intersection.
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2. Differential polynomial algebras

Let R be any commutative ring with unity. A mapping d : R→ R is called a derivation if

d(s + t) = d(s) + d(t)

d(st) = d(s)t + sd(t)

holds for all s, t ∈ R.
Let ∆ = {δ1, . . . , δm} be a basic set of derivation operators.
A ring R is said to be a differential ring or ∆-ring if all elements of ∆ act on R as a commuting set

of derivations, i.e., the derivations δi : R → R are defined for all i and δiδ j = δ jδi for all i, j. If ∆ = {δ}

(that is, if ∆ consists of only one derivation), then R is called an ordinary differential ring and will
be denoted as δ-ring, unless R is called a partial differential ring. In this work, we study on ordinary
differential rings.

Let Θ be the free commutative monoid generated by a derivation operator δ. For n = 0, 1, 2, ..., the
elements

θ = ( δδ . . . δ︸ ︷︷ ︸
(n−1)−times

)δ = δn,

of the monoid Θ are called derivative operators. The order of θ is defined as |θ| = n. If R is a δ-ring and
R is a field (resp. integral domain), then R is called a differential field (resp. integral domain). Let x be
a differential indeterminate and let Θx = {θx|θ ∈ Θ} be the set of symbols enumerated by the elements
of Θ. Consider the polynomial algebra R[Θx] over a δ-ring R generated by the set of (algebraically)
independent indeterminates Θx. It is easy to check that the derivation δ can be uniquely extended to
a derivation of R[Θx] by δ(θx) = (δθ)x. Denote this differential ring by R{x}; it is called the ring of
differential polynomials in x over R.

By adjoining more differential indeterminates, we obtain the differential ring R{x1, x2, . . . , xn} of
the differential polynomials in x1, x2, . . . , xn over R. The ring R{x1, x2, . . . , xn} coincides with the
polynomial algebra

R[θxi : θ ∈ Θ, 1 ≤ i ≤ n].

Consequently, the set of differential monomials

M = θ1xk1 · · · θsxks

where 1 ≤ ki ≤ n, θi ∈ Θ, 1 ≤ i ≤ s, form a linear basis of R{x1, x2, . . . , xn} over R.
The degree deg(M) for a monomial M =

∏s
i=1(θixki), 1 ≤ ki ≤ n, θi ∈ Θ, 1 ≤ i ≤ s is defined

as in the algebraic case: deg(M)=s. It is clear that deg(θxi) = 1, for each i, θ ∈ Θ. The elements of
the ring R{x1, x2, . . . , xn} are called differential polynomials. The degree of a differential polynomial
f is deg( f )=maxM∈ f deg(M), where M ∈ f means that M is a differential monomials occurring in f .
If each term of a differential polynomial f has the same degree, then f is a homogeneous differential
polynomial. By degxi f we denote the degree of f with respect to xi and its derivatives. We have
degxi(θx j) = δi j where 1 ≤ i ≤ n, 1 ≤ j ≤ n, θ ∈ Θ and δi j is the Kronecker delta function.

On the other hand one defines the weight of the monomial M as wt(M) =
∑s

i=1 |θi|, where θi ∈ Θ and
the weight of a differential polynomial f as wt( f )=maxM∈ f wt(M). The terms occurring in f that have
the same weight are called isobaric component of f .
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Let R be a δ-ring, an ideal a ∈ R is a differential ideal (δ-ideal) if a ∈ a, we have δ(a) ∈ a.
Additionally if a is a radical ideal, then it is called as radical δ-ideal.

A subset V ⊆ R2 is Kolchin-closed if it is the set of all common zeros in R2 of a radical differential
ideal a ⊆ R{x, y}.

Let R be a δ-field, we say that R is differentially closed if every consistent system of differential
polynomial equations with coefficients in R has a solution in R.

3. Differential automorphisms of R{x, y}

Definition 1. Let R be a δ-ring with a derivation operator δ. A differential ring homomorphism, or
simply a δ-homomorphism, of R is a ring automorphism ϕ of R such that ϕ(δ(a)) = δ(ϕ(a)), for all
a ∈ R. If the δ-homomorphism ϕ is a ring automorphism of R, then ϕ is a δ-automorphism.

Definition 2. Let K be a differential ring extension of a δ-ring R. A δ-automorphism ϕ of K is called
an R-δ-automorphism, provided ϕ(a) = a, for all a ∈ R. The set of all R-δ-automorphism of K is a
group under composition, denoted by Autδ(K|R).

From now, let R be an integral domain with only derivation operator δ and R{x, y} be the differential
polynomial ring in x, y over R. Notice that since R{x, y} is the free object on the set {x, y} in the category
of differential R-δ-algebras and hence has the universal mapping property.

Definition 3. Let F1 = F1(x, y) and F2 = F2(x, y) be two differential polynomials in R{x, y}. A tuple
F = (F1, F2) in R{x, y}2 defines uniquely a R-δ-homomorphism σF : R{x, y} → R{x, y} such that
σF(x) = F1, σF(y) = F2. For any P ∈ R{x, y}, σF(P) = P(F1, F2) (that is, P acts like a bivariate
differential operator on pair (F1, F2)). Conversely, every R-δ-homomorphism σ of R{x, y}(in particular,
the inverse of an R-δ-automorphism σ ∈ Autδ(R{x, y}|R)) is of form σF for some tuple F = (F1, F2) ∈
R{x, y}2.

Definition 4. A differential polynomial map is a polynomial map ϕF : R2 → R2 defined by a tuple
F = (F1, F2) in R{x, y}2 such that ϕF(a, b) = (F1(a, b) , F2(a, b)) for any (a, b) ∈ R2.

Definition 5. A differential polynomial map ϕF said to be invertible if there exists
G = (G1(x, y),G2(x, y)) ∈ R{x, y}2 such that ϕF ◦ ϕG = ı, where ı is the identity map on the set R2.

The following theorem is a simplified version of a theorem of Kolchin [8, Theorem 4, p. 105] and
is analogous to the algebraic fact that in characteristic zero, any two transcendence bases of a field
extension K over k have the same cardinality. Kolchin proved the analog of for arbitrary characteristic
in terms of differential inseparability basis of a partial differential field extension K over a partial
differential field k.

Theorem 1. Let K be a differential field extension of an ordinary differential field k of characteristic
zero. Then every set Σ ⊂ K that (differentially) generates K over k (that is, K = k 〈Σ〉) contains a
differential transcendence basis K of over k and any two differential transcendence bases of K over k
have the same cardinality (called the differential dimension of K over k).

The next theorem is known as differential analogue of Hilbert’s Nullstellensatz, but is a much deeper
result as it involves the notion of a differential closed field.
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Theorem 2. Let R be differentially closed field of characteristic zero. The correspondence between the
set of radical differential ideals a of R{x, y} and the set of Kolchin-closed subset V ⊆ R2, given by

a 7→ V(a) = {(a, b) ∈ R2|P(a, b) = 0 for all P ∈ a}

is bijective with the inverse given by

V ⊆ R2 7→ a(V) = {P ∈ R{x, y}|P(a, b) = 0 for all (a, b) ∈ V}.

Remark 1. It follows that V((0)) = R2 and a(R2) = (0). In particular, we have this property : “For any
P ∈ R{x, y}, if P vanishes for every (a, b) ∈ R2, then P = 0”.

From now, for simplicity, we will use P instead of P(x, y) for a differential polynomial P(x, y) of
R{x, y}.

In the next theorem, we show the relation between differential polynomial maps and differential
automorphisms. Here when we say that “for some G” we mean “for some G = (G1,G2) ∈ R{x, y}2”.

Theorem 3. Let R be a differential integral domain. Let F = (F1, F2) ∈ R{x, y}2.

I. The following are equivalent:
(a) σF is a differential automorphism with an inverse σG for some G.
(b) σF is surjective (equivalently, R{x, y} = R{F1, F2}).
(c) x = G1(F1, F2) and y = G2(F1, F2) for some G.

II. If F satisfies any (and all) of the conditions in I., then
(d) ϕF is a invertible differential polynomial map (that is, ϕF ◦ ϕG = ı for some G).
(e) x = F1(G1,G2) and y = F2(G1,G2) for some G.
(f) ϕF has an inverse ϕG for some G.

III. If R is a differentially closed field of characteristic zero, then (a)–(f) are all equivalent, and the
tuple G ∈ R{x, y}2 involved are unique and the same.

Proof. I. The implications (a) ⇒ (b) ⇒ (c) are trivial. We now show the converses: (c) ⇒ (b) ⇒ (a).
From (c), we have x, y ∈ R{F1, F2}, hence σF(R{x, y}) = R{F1, F2} = R{x, y}, which is (b). From (b),
let K be the quotient field of R (R is a domain). Then K is a differential field and the two quotient
fields K〈x, y〉 of R{x, y} and K〈F1, F2〉 of R{F1, F2} coincide. By Theorem 1, the set {F1, F2} forms a
differential transcendence basis of K〈x, y〉 = K〈F1, F2〉 over K. So F1, F2 are differentially algebraic
independent over K and a fortiori over R, which means σF is injective and hence (a).

II. We now assume F satisfies (a), (b), and (c) and prove the second part by proving several
implications. In this part of the proof, let G be as in (c).

(c)⇒(d):
By (c), for all (a, b) ∈ R2,

ϕG ◦ ϕF(a, b) = ϕG(F1(a, b), F2(a, b))
= (G1(F1(a, b), F2(a, b)),G2(F1(a, b), F2(a, b)))
= (a, b).

(3.1)

Hence ϕG ◦ ϕF = ı, the identity map on R2 and (d) holds.
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(c)⇒ (e):
From (c), we have σF(F1(G1,G2)) = F1(G1(F1, F2),G2(F1, F2)) = F1(x, y) = σF(x). Since (c) ⇒ (a),
σF is injective and so x = F1(G1,G2). Similarly, y = F2(G1,G2) and (e) holds.

(c)⇒ ( f ):
By (c),σF◦σG = I,where I is the identity automorphism of R{x, y} and from equation (3.1) in (c)⇒ (d),
ϕG ◦ ϕF = ı. Since (c) ⇒ (e), σG ◦ σF = I and ϕF ◦ ϕG = ı. Hence (f). In fact, we also prove σG is the
inverse of σF .

III. Let R be a differential closed field of characteristic zero. In I. we have proved that the G in (c)
works for (a) and vice versa. In II. we have proved that the G from (c) works for (d), (e), and (f). We
now prove the converses and that the G from any of (d), (e), or (f) works for (c), too and hence G is
unique (because G defines the inverse of σF) and all G in all the equivalent conditions are the same.

(d)⇒ (c):
Suppose there exists G = (G1,G2) ∈ R{x, y}2 such that ϕG ◦ ϕF = ı. Then from equation (3.1), the
differential polynomials P = G1(F1, F2)− x and Q = G2(F1, F2)− y each vanishes at all (a, b) ∈ R2. By
Remark 1, P = Q = 0, which proves (c).

(e)⇒ (c):
Let G = (G1,G2) be as given in (e). We now apply the already proven first two parts of this theorem to
G (taking the place of F). If we temporarily ornate the corresponding item labels in the theorem for G
with †, then (c)† holds using the F = (F1, F2) from (e). Since we have proved (c)† ⇒ (e)†, using the F
of (c)†, it follows that (e)⇒ (c), using the G from (e).

( f )⇒ (c):
Let G be such that ϕG is the inverse of ϕF . Then of course ϕG ◦ ϕF = ı, which is (d), and which
implies(c). �

4. The subgroups of the group of differential automorphisms of R{x, y}

From now let R be a differentially closed field of characteristic zero. Now, for each subset
S ⊆ R{x, y}2 of interest, we want to find any necessary and sufficient conditions CS on F that will
make σF an R-δ-automorphism of R{x, y} for every F ∈ S , that is, for σF to have an inverse
σ−1

F ∈ Autδ(R{x, y}/R). Thus CS is not only the set of necessary and sufficient conditions for σF to be
both injective and surjective, but also becomes part of defining properties of the set S . Then, it is valid
to identify S as a subset Σ(S ) of Autδ(R{x, y}/R) via F → σF and not merely as a set of
R-δ-automorphisms. Moreover, we want to identify those S ⊆ R{x, y}2 for which Σ(S ) = {σF |F ∈ S }
are subgroups of Autδ(R{x, y}/R).

Notice that there are two properties Σ(S ) (or S ) must satisfy to ensure that Σ(S ) is a subgroup. The
first of these properties is after showing that σ−1

F exists and hence σF ,σ−1
F ∈ Autδ(R{x, y}/R), it needs

to belong to Σ(S ), that is, σ−1
F = σG for some G = (G1,G2) ∈ S . The second is that for any σF and

σG in Σ(S ), their composition σF ◦ σG must also belong to Σ(S ). That means σF ◦ σG = σH for some
H = (H1,H2) ∈ S .

Some important subgroups of Autδ(R{x, y}/R) are defined as follows:

(1). The Affine differential subgroup: We determine it as A f fδ(R{x, y}/R).
Consider Fi ∈ R{x, y}, deg(Fi) = 1, wt(Fi) = 0, (i = 1, 2), then for a, b, c, d, e, f ∈ R put
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F1 = ax + by + c, F2 = dx + ey + f and det(
[
a b
d e

]
) = |JF|.

After calculating the conditions CS for S = A f fδ(R{x, y}/R) and F = (F1, F2) ∈ S , we define
Affine-δ subgroup as follows:

A f fδ(R{x, y}/R) = {(ax + by + c, dx + ey + f )|a, b, c, d, e, f ∈ R, |JF| ∈ R∗}.

(2). The Triangular differential subgroup: We determine this subgroup as Jδ(R{x, y}/R) and similarly
we calculate it as follows:

Jδ(R{x, y}/R) = {(ax + f (y), by + c)|a, b ∈ R∗, c ∈ R and f (y) ∈ R{y}}.
Here R∗ denotes nonzero elements of R.

(3). The Elementary differential subgroup: We determine this subgroup as Eδ(R{x, y}/R) and we
calculate it as:

Eδ(R{x, y}/R) = {(ax + f (y), y)|a ∈ R∗ and f (y) ∈ R{y}}.

Definition 6. The subgroup of Autδ(R{x, y}|R) generated by the Affine R-δ-automorphisms and the
Triangular R-δ-automorphisms is called Tame δ-subgroup and is denoted by Tδ(R{x, y}|R).

Now we will show that Tδ(R{x, y}|R) is the amalgamated free product of Affδ(R{x, y}|R) and
Jδ(R{x, y}|R) over their intersection.

To prove the results announced above we need the following lemmas.

Lemma 1. Let G be a group generated by two subgroups H and K. Then every element g of G can be
written as

g = h0k1h1 · · · k`h`

for some ` ≥ 1, where hi ∈ H \ K for all 1 ≤ i ≤ ` − 1 and ki ∈ K \ H for all 1 ≤ i ≤ ` and h0 ∈ H.

Proof. See, [16], Lemma 5.1.1, p.86. �
Let F = (F1, F2),G = (G1,G2) ∈ R{x, y}2 and let σF and σF be automorphisms defined by F and

G respectively. We define composition of σF and σG as follows: there exists H = (H1,H2) ∈ R{x, y}2

such that

σH(x) = (σF ◦ σG)(x) = G1(F1(x, y), F2(x, y)) = H1

σH(y) = (σF ◦ σG)(y) = G2(F1(x, y), F2(x, y)) = H2.

To formulate Lemma 2 and Corollary 1 below, we need following notations: let F = (F1, F2) ∈
R{x, y}2. Then

degF =max{deg(F1), deg(F2)},

bidegF = (deg(F1),deg(F2)),

wtF =max{wt(F1), wt(F2)},

biwtF = (wt(F1),wt(F2)).
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Now let F ∈ Tδ(R{x, y}|R). Then applying Lemma 1 to G = Tδ(R{x, y}|R), H =Affδ(R{x, y}|R),
K = Jδ(R{x, y}|R) and g = F we can write

F = λ0τ1λ1 · · · τ`λ`

with λi ∈Affδ(R{x, y}|R) \ Jδ(R{x, y}|R) for all 1 ≤ i ≤ `− 1 and τi ∈ Jδ(R{x, y}|R)\ Affδ(R{x, y}|R) for all
1 ≤ i ≤ `. Write

λi = (aix + biy + ci, dix + eiy + fi).

Note that for an integer j, if λ j ∈Affδ(R{x, y}|R) \ Jδ(R{x, y}|R), then d j = 0.
Remark 2. Observe that if τ ∈ Jδ(R{x, y}|R)\ Affδ(R{x, y}|R) then either wt(τ) ≥ 1 or wt(τ) = 0 and
deg(τ) ≥ 2.

Lemma 2. For any positive integer ` we have

bideg(λ1 ◦ τ1 ◦ · · · ◦ λ` ◦ τ`) = (
∏`

j=1 deg(τ j(x)),
∏`−1

j=1 deg(τ j(x)))

where for all 1 ≤ i ≤ `, wt(τi) = 0 and the second product is by definition 1 if ` = 1.

Proof. We prove the lemma by induction on `. The case ` = 1 is obvious. So let us assume that the
statement is true for some n and consider bideg(λ1 ◦ τ1 ◦ · · · ◦ λn ◦ τn ◦ λn+1). Since λn+1 < Jδ(R{x, y}|R),
we have that dn+1 , 0. Therefore

bideg(λ1 ◦ τ1 ◦ · · · ◦ λn ◦ τn ◦ λn+1) = (pi,
∏n

j=1 deg(τ j(x))),

where pi ≤
∏n

j=1 deg(τ j(x)). Finally since τn+1 < Affδ(R{x, y}|R), we have that

bideg(λ1 ◦ τ1 ◦ · · · ◦ λn ◦ τn ◦ λn+1 ◦ τn+1) = (
n∏

j=1

deg(τ j(x)).deg(τn+1(x)),
n∏

j=1

deg(τ j(x)))

= (
n+1∏
j=1

deg(τ j(x)),
n∏

j=1

deg(τ j(x)))

which completes the proof. �

Corollary 1. Tδ(R{x, y}|R) is the amalgamated free product of A f fδ(R{x, y}|R) and Jδ(R{x, y}|R) over
their intersection, i.e., Tδ(R{x, y}|R) is generated by these two groups and if
τi ∈ Jδ(R{x, y}|R) \ A f fδ(R{x, y}|R) and λi ∈ A f fδ(R{x, y}|R) \ Jδ(R{x, y}|R) then
τ1 ◦ λ2 · · · ◦ τn−1 ◦ λn ◦ τn does not belong to A f fδ(R{x, y}|R).

Proof. By the definition, Tδ(R{x, y}|R) is generated by Affδ(R{x, y}|R) and Jδ(R{x, y}|R). So suppose that

τ1 ◦ λ2 · · · ◦ τn−1 ◦ λn ◦ τn = λ ∈ Affδ(R{x, y}|R),

with τi ∈ Jδ(R{x, y}|R)\Affδ(R{x, y}|R) and λi ∈ A f fδ(R{x, y}|R) \ Jδ(R{x, y}|R) for all i. Then

λ−1 ◦ τ1 ◦ λ2 · · · ◦ τn−1 ◦ λn ◦ τn(x, y) = (x, y).
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Therefore we have
bideg(λ−1 ◦ τ1 ◦ λ2 · · · ◦ τn−1 ◦ λn ◦ τn) = (1, 1) (4.1)

biwt(λ−1 ◦ τ1 ◦ λ2 · · · ◦ τn−1 ◦ λn ◦ τn) = (0, 0) (4.2)

Since τi ∈ Jδ(R{x, y}|R)\ Affδ(R{x, y}|R), then

wt(τi) ≥ 1 or wt(τi) = 0.

Now let us suppose for all i, wt(τi) = 0 so deg(τi) ≥ 2. By the Lemma 2, we have

bideg(λ−1 ◦ τ1 ◦ λ2 · · · ◦ τn−1 ◦ λn ◦ τn) = (
∏n−1

j=1 deg(τ j(x)).deg(τn(x)),
∏n−1

j=1 deg(τ j(x)))

From the equation (4.1), deg(τn) = 1 which is a contradiction. Let us suppose that for all i, wt(τi) ≥
1, so

biwt(λ−1 ◦ τ1 ◦ λ2 · · · ◦ τn−1 ◦ λn ◦ τn) > (0, 0)

which is a contradiction by (4.2). �
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