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1. Introduction

In Euclidean space E3 a regular curve whose tangent vector T make a constant angle with a fixed
direction, is called a general helix (or curve of the constant slope) ( [1]). A classical result stated by
M. A. Lancret in 1802 and first proved by B. de Saint Venant in 1845 is: a regular curve α with the
first curvature κ , 0 and second curvature τ in E3 is the general helix if and only if it has constant
conical curvature τ

κ
(see [1] for details). The slant helix is a curve with non-vanishing curvature whose

principal normal vector N makes a constant angle with a fixed direction and characterized these curves
with

κ2(
κ2 + τ2) 3

2

(
τ

κ

)′
(1.1)

is a constant function ([2]). There is a nice relation between slant helices and general helices. Namely,
slant helices are the successor curves of general helices ([3]). In particular, general helix has constant
conical curvature, while the geodesic curvature of the principal normal indicatrix of a slant helix is
constant. They can be found on general Hopf cylinders ( [4, 5]) and on helix surfaces ( [5]). The
Darboux helix is defined by the property that the Darboux vector ω makes a constant angle with a
fixed direction and give some characterizations of these curves [6]. Also, several kinds of helices are
introduced and characterized by many researchers in [7–14].
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In addition to these, more and more researchers have still paid their attention to these curves. In [15]
Çiftçi defined a general helix in a Lie group with a bi-invariant metric as a curve whose tangent vector
makes a constant angle with a left-invariant vector field and characterized general helices by a relation
between the curvature κ and the torsion τ:

τ − τG

κ
= constant, (1.2)

where τG = 1
2 〈[T,N] , B〉 and {T,N, B} being the Frenet frame. In [16] Okuyucu et al. defined a

slant helix in a Lie group with a bi-invariant metric as a curve whose principal normal vector makes a
constant angle with a left-invariant vector field. As a result, the necessary and sufficient condition for
a curve to be a slant helix is given by

κ
(
H2 + 1

) 3
2

H′
= constant, (1.3)

where H = τ−τG
κ

. Then, Yampolsky et al., [17], defined the first, second, and third kind of helices
on 3-dimensional Lie groups with left-invariant metric and obtained their description in terms of new
geometric invariants of the curve. Also, they generalized corresponding descriptions for helices in
three dimensional Lie groups with bi-invariant metric.

In this paper, we introduce Darboux helices in a three dimensional Lie group with a bi-invariant
metric. We give some characterizations for such curves and obtain parameter equations of their axes.
Besides, we give some relations between some special curves (general helices and slant helices) and
Darboux helices. Moreover, we show that all Darboux helices are not a slant helix if G is commutative
(i.e. G = E3).

2. Preliminaries

Let G be a smooth manifold which is also a topological group with multiplication map mult :
G ×G −→ G and inverse map inv : G −→ G and view G ×G as the product manifold. Then G is a Lie
group if mult, inv are smooth maps. By the manifold properties, any two points in G can be connected
by a smooth trajectory, and at any point g ∈ G one can define a differential dg that is tangent to G. The
differential at the neutral element e ∈ G (identity) is particularly important. The tangent space at the
identity of G is g =TeG, which is called the Lie algebra for G. The Lie algebra g along with a bilinear
map [·, ·] : g × g −→ g called the Lie bracket, forms a vector space.

This paper always considers g endowed with the Euclidean metric 〈 , 〉 such that the following two
identities hold for all X,Y,Z ∈ g:

〈X, [Y,Z]〉 = 〈[X,Y] ,Z〉 , (2.1)

and

DXY =
1
2

[X,Y] , (2.2)

where D is the Levi-Civita connection of G.
Let {X1, X2, . . . , Xn} be an orthonormal basis of g and α : I ⊂ R −→ G be a parametrized curve in

terms of arc-length s. The covariant derivative of U = {u1, u2, . . . , un} ∈ g along the curve α with the
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notation Dα′U is given as follows

Dα′U = U̇ +
1
2

[T,U] (2.3)

where T = α′ = dα
ds is the tangent vector field of α and U̇ =

n∑
i=1

dui
dt Xi. Note that U̇ = 0 if U is the

left-invariant vector field of α, [15].
Now, let G be a three dimensional Lie group and α : I ⊂ R −→ G be a curve with the Frenet

apparatus {T,N, B, κ, τ}, parameterized by the arc-length parameter s. Then, by using (2.3) the
curvatures κ and τ of α are given by

κ = ‖DT T‖ =
∥∥∥Ṫ

∥∥∥ ,
τ = ‖DT B‖ − τG,

(2.4)

where
τG =

1
2
〈[T,N] , B〉 , (2.5)

or

τG =
1

2κ2τ

[〈
T̈ ,

[
T, Ṫ

]〉
+

1
2

∥∥∥∥[T, Ṫ ]∥∥∥∥2
]
. (2.6)

( [15]).

Proposition 1. Let α be a curve in three dimensional Lie group G with the Frenet apparatus
{T,N, B, κ, τ}, parameterized by the arc-length parameter s. Then the following equalities hold

[T,N] = 〈[T,N] , B〉 = 2τGB,

[T, B] = 〈[T, B] ,N〉 = −2τGN,

[N, B] = 〈[N, B] ,T 〉 = 2τGT.

Proposition 2. ( [15, 18])Let G be a three dimensional Lie group with bi-invariant metric.Then, the
following statements hold:
i) if G is a commutative group, then τG = 0,
ii) if G is S O (3), then τG = 1

2 ,
iii) if G is S 3 � S U (2), then τG = 1.

3. Darboux helices in three dimensional Lie groups

In this section, we will define Darboux helices in a three dimensional Lie group G furnished with
a bi-invariant metric 〈, 〉 and characterize these curves. Also, we obtain some interesting relations
between some special curves (general helices and slant helices) and Darboux helices. Furthermore, we
prove that all Darboux helices are not a slant helix if G is commutative (i.e. G = E3)

When the Frenet frame {T,N, B} of a curve α makes an instantaneous helix motion in three
dimensional Lie group G, there exists an axis of frame’s rotation whose direction is given by the
vector

ω (s) = τ (s) T (s) + κ (s) B(s), (3.1)

which is called a Darboux vector (centrode).
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Definition 1. Let α be a curve in three dimensional Lie group G with the Frenet apparatus
{T,N, B, κ, τ}, parameterized by the arc-length parameter s. The curve α is called a Darboux helix if
its unit Darboux vector makes a constant angle with a left-invariant vector field U ∈ g.

The vector field U express the axis of helix. We will exclude the case when the Darboux vector
ω is constant (i.e. ‖ω‖ = τ2 + κ2 , constant), since it trivially makes constant angle with any fixed
direction. Also, let R0 denote R\ {0} .

Now, let α be a Darboux helix in three dimensional Lie group G parameterized by the arc-length
function s. Then, from the Definition 1 there exists a unit left-invariant vector field U ∈ g such that the
following relation is satisfied

〈ω,U〉 = c, (3.2)

and with respect to the Frenet frame {T,N, B} the axis U can be decomposed as

U = u1T + u2N + u3B, (3.3)

where u1 = 〈T,U〉, u2 = 〈N,U〉 and u3 = 〈B,U〉 are some differentiable functions of the arclength
parameter s and c ∈ R. Then, from (3.2) and (3.3) we get,

u1τ + u3κ = c. (3.4)

Also, differentiating the Eq. (3.3), we obtain

DT U = u′1T + u1DT T + u′2N + u2DT N + u′3B + u3DT B, (3.5)

where
DT T = κN, DT N = −κT + τB, DT B = −τN. (3.6)

Since U ∈ g is the left-invariant vector field of α, i.e. U̇ = 0, we have

DT U =
1
2

[T,U] ,

and from the Proposition 1
DT U = −u3τGN + u2τGB. (3.7)

Combining the relations (3.5)–(3.7) we have

−u3τGN + u2τGB =
(
u′1 − κu2

)
T +

(
u′2 + u1κ − τu3

)
N +

(
u′3 + τu2

)
B,

and then we obtain the following system of differential equations
u′1 − κu2 = 0,

u′2 + κu1 − (τ − τG) u3 = 0,
u′3 + (τ − τG) u2 = 0.

(3.8)

In what follows, we derive the functions u1(s), u2(s) and u3(s) satisfying (3.4) and (3.8) by
considering two cases: (A) u2 (s) = constant; (B) u2 (s) , constant. In each of these cases, we will
distinguish the subcase when ω is orthogonal to U (c = 0) and when ω is not orthogonal to U (c , 0).
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(A) u2 (s) = constant. Then from the relation (3.8) we have,
u′1 − κu2 = 0,

κu1 − (τ − τG) u3 = 0,
u′3 + (τ − τG) u2 = 0.

(3.9)

(A1) If ω is not orthogonal to U (c , 0), then from the relation (3.4) and the second equation of (3.9),
we have, {

u1 = c τ−τG
κ2+τ(τ−τG) ,

u3 = c κ
κ2+τ(τ−τG) .

(3.10)

Substituting (3.10) in the first equation of (3.9), we obtain,(
τ−τG
κ

)′
[
κ2 + τ (τ − τG)

] (
1 +

(
τ−τG
κ

)2
) = constant. (3.11)

Conversely, we assume that the relation (3.11) holds. Consider the vector U given by

U = c
(

τ − τG

κ2 + τ (τ − τG)

)
T + cu2N + c

(
κ

κ2 + τ (τ − τG)

)
B, (3.12)

where c ∈ R0 and u2 is non-zero constant given by

u2 =

(
τ−τG
κ

)′
[
κ2 + τ (τ − τG)

] (
1 +

(
τ−τG
κ

)2
) . (3.13)

Differentiating the Eq. (3.12) and using the Eqs. (2.2) and (2.3), we find U̇ = 0. Hence U is a left-
invariant vector field. It can be easily checked that 〈ω,U〉 = c. According to the Definition 1, α is a
Darboux helix whose axis is spanned by U. This proves the next theorem.

Theorem 1. Let α be a unit speed curve in three dimensional Lie group G with the non-zero curvatures
κ and τ. Then, α is a Darboux helix if and only if(

τ−τG
κ

)′
[
κ2 + τ (τ − τG)

] (
1 +

(
τ−τG
κ

)2
) = constant (3.14)

and the axis of α is given by (3.12).

Corollary 1. Every general helix in three dimensional Lie group G is a Darboux helix with the axis
given by (3.12).

Corollary 2. A Darboux helix with the axis given by (3.12) in three dimensional Lie group G is a slant
helix.
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(A2) If ω is orthogonal to U (c = 0), then from the relation (3.4), we obtain

u3 = −
τ

κ
u1, (3.15)

and from the second equation of (3.9), we have

τ − τG

κ
= −

κ

τ
, (3.16)

where τG , 0 for all s since the Darboux vector ω is not constant.
Substituting (3.15) in the third equation of (3.9) we obtain

−

(
τ

κ

)′
u1 −

(
τ

κ

)
u′1 + (τ − τG) u2 = 0, (3.17)

and from the first equation of (3.9) (
τ

κ

)′
u1 − τGu2 = 0. (3.18)

Then we have the following subcases:
(A2.1) if τ

κ
= constant, then u2 = 0 and from the first equation of (3.9) and the relation (3.15) we get{

u1 = u0 = constant , 0,
u3 = − τ

κ
u0.

(3.19)

Substituting (3.19) in the second equation of (3.9), we have

τ − τG

κ
= constant. (3.20)

Therefore, the axis U is given by

U = u0T −
τ

κ
u0B, (3.21)

where u0 ∈ R0.
(A2.2) if τ

κ
, constant, then u2 , 0 and from the relation (3.18) we get,

u1 =
τG(
τ
κ

)′u2, (3.22)

where τG , 0. Hence, the axis is given by

U = −
τG(
τ
κ

)′u2T + u2N + u2

τκ τG(
τ
κ

)′
 B, (3.23)

where u2 ∈ R0 for all s.
Thus, we can give the next theorem.
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Theorem 2. Let α be a Darboux helix whose axis is orthogonal to ω in three dimensional Lie group G
with the non-zero curvatures κ and τ. Then,
(i) if τ

κ
= constant, then

τ − τG

κ
= constant, (3.24)

and its axis lies in the planes spanned by {T, B} and is given by

U = u0T −
τ

κ
u0B, (3.25)

where u0 ∈ R0.
(ii) if τ

κ
, constant, then

τ − τG

κ
= −

κ

τ
, (3.26)

and its axis is given by

U = −
τG(
τ
κ

)′u2T + u2N + u2

τκ τG(
τ
κ

)′
 B, (3.27)

where τG , 0 and u2 ∈ R0.

Corollary 3. Let α be a Darboux helix whose axis is orthogonal to ω in three dimensional Lie group
G with the non-zero curvatures κ and τ. Then,
(i) if τ

κ
= constant, then the Darboux helix α is both a general helix and a slant helix;

(ii) if τ
κ
, constant, then the Darboux helix α is not a general helix, but a slant helix.

Using the Proposition 2, we can give the following corollary.

Corollary 4. Let α be a Darboux helix whose axis is orthogonal to ω in three dimensional Lie group
G with the non-zero curvatures κ and τ. If τ

κ
, constant for all s, then

(i) there is not defined Darboux helix α in the commutative Lie group G;
(ii) every Darboux helix α in the Lie groups S U(2) and S O(3) is a slant helix with the axis given by
(3.27).

(B) u2 (s) , constant.
(B1) If ω is orthogonal to U (c = 0), then from the relation (3.4), we obtain

u3 = −
τ

κ
u1. (3.28)

Substituting (3.28) in the third equation of (3.8) we obtain,

−

(
τ

κ

)′
u1 −

(
τ

κ

)
u′1 + (τ − τG) u2 = 0, (3.29)

and from the first equation of (3.8)

−

(
τ

κ

)′
u1 − τGu2 = 0. (3.30)

There are the following two subcases:
(B1.1) if τ

κ
, constant for all s, then τG , 0 and we have u1 = − τG

( τκ )
′u2,

u3 = τ
κ
τG

( τκ )
′u2.

(3.31)
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Moreover, from the relation (3.3) we get

〈U,U〉 = u2
1 + u2

2 + u2
3 = constant. (3.32)

Combining the relations (3.31) and (3.32), let r ∈ R+ be the constant given by1 +

[
1 +

(
τ

κ

)2
]  τG(

τ
κ

)′


2 u2
2 = r2, (3.33)

and we obtain
u2 = ±

r√
1 +

[
1 +

(
τ
κ

)2
] (

τG

( τκ )
′

)2
. (3.34)

Taking the derivative in the first equation of (3.31) and by using the first and third equation of (3.8),
we get:

κu2 =
κτG(
τ
κ

)′u1 −

 τG(
τ
κ

)′

′

u2 −
(τ − τG) τG(

τ
κ

)′ u3. (3.35)

Substituting (3.31) in (3.35) we obtain

τ

κ
=

∫
τG

[
s +

∫
τ (τ − τG)

κ2 ds
]

ds, (3.36)

where τG , 0 for all s.
Conversely, we assume that the relation (3.36) holds. Consider the vector U given by

U = −
τG(
τ
κ

)′u2T + u2N +
τ

κ

τG(
τ
κ

)′u2B, (3.37)

where u2(s) is given by

u2 (s) =
1√

1 +

[
1 +

(
τ
κ

)2
] (

τG

( τκ )
′

)2
(3.38)

is not constant. Differentiating the Eq. (3.37) and using the Eqs. (2.2) and (2.3), we find U̇ = 0. Hence
U is a left-invariant vector field. It can be easily checked that 〈ω,U〉 = 0. According to the Definition
1, α is a Darboux helix whose axis is spanned by U.
Therefore, we can give the following theorem and corollary.

Theorem 3. Let α be a unit speed curve in three dimensional Lie group G with the non-zero curvatures
κ and τ. Then, α is a Darboux helix whose axis is orthogonal to ω if and only if

τ

κ
=

∫
τG

[
s +

∫
τ (τ − τG)

κ2 ds
]

ds, (3.39)

is not constant everywhere τG doesn’t vanish.
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Corollary 5. The axis of Darboux helix α, which is orthogonal to ω, is given by (3.37).

(B1.2) if τ
κ

= constant for all s, then τG = 0 and so, the relation (3.28) and the second equation of (3.8)
yield

u′2 +

(
κ2 + τ2

κ

)
u1 = 0, (3.40)

and from the first equation of (3.8) we get,

d
ds

(
1
κ

du1

ds

)
+

[
1 +

(
τ

κ

)2
]
κu1 = 0. (3.41)

Putting p (s) = 1
κ(s) , the Eq. (3.41) can be written as

d
ds

(
p (s)

du1

ds

)
+

[
1 +

(
τ

κ

)2
]

u1 (s)
p (s)

= 0. (3.42)

By changing the variables in the above equation with t (s) =
∫

1
p(s)ds, we find

d2u1

dt2 +

[
1 +

(
τ

κ

)2
]

u1 = 0. (3.43)

The solution of the previous differential equation is given by

u1 = C2 sin


√

1 +

(
τ

κ

)2
t

 + C1 cos


√

1 +

(
τ

κ

)2
t

 , (3.44)

where C1,C2 ∈ R. Finally, since t (s) =
∫
κ (s) ds, we obtain

u1 (s) = C2 sin


√

1 +

(
τ

κ

)2 ∫
κ (s) ds

 + C1 cos


√

1 +

(
τ

κ

)2 ∫
κ (s) ds

 . (3.45)

Conversely, we assume that τ
κ

= constant and τG = 0 for all s holds. Consider the vector U given by

U = u1 (s) T + u2 (s) N + u3 (s) B, (3.46)

where

u1 (s) = C2 sin
(√

1 +
(
τ
κ

)2 ∫
κ (s) ds

)
+ C1 cos

(√
1 +

(
τ
κ

)2 ∫
κ (s) ds

)
,

u2 (s) =

√
1 +

(
τ
κ

)2
(
C2 cos

(√
1 +

(
τ
κ

)2 ∫
κ (s) ds

)
−C1 sin

(√
1 +

(
τ
κ

)2 ∫
κ (s) ds

))
,

u3 (s) = − τ
κ

(
C2 sin

(√
1 +

(
τ
κ

)2 ∫
κ (s) ds

)
+ C1 cos

(√
1 +

(
τ
κ

)2 ∫
κ (s) ds

))
,

(3.47)

and C1,C2 ∈ R. Differentiating the Eq. (3.46) and using the Eqs. (2.2) and (2.3), we find U̇ = 0. Hence
U is a left-invariant vector field. It can be easily checked that 〈ω,U〉 = 0. According to the Definition
1, α is a Darboux helix whose axis is spanned by U.
Therefore, we can give the following theorem.
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Theorem 4. Let α be a unit speed curve in the commutative Lie group G with the non-zero curvatures
κ and τ. Then, α is a Darboux helix if and only if

τ

κ
= constant, (3.48)

and the axis of α is given by (3.46).

Corollary 6. There is not any curve both a Darboux helix and a slant helix with the axis given by
(3.46) in the commutative Lie group G.

(B2) If ω is not orthogonal to U (c , 0), then from the relation (3.4), we obtain

u3 = −
c
κ
−
τ

κ
u1, (3.49)

where κ , 0 for all s.
Substituting (3.28) in the third equation of (3.8) we obtain,

−

(
τ

κ

)′
u1 −

(
τ

κ

)
u′1 + (τ − τG) u2 = 0, (3.50)

and from the first equation of (3.8)

u1 = c

(
1
κ

)′(
τ
κ

)′ − τG(
τ
κ

)′u2. (3.51)

Taking the derivative the relation (3.4) and by using the first and third equation of (3.8), we get

u1τ
′ + κτGu2 + u3κ

′ = 0. (3.52)

Substituting (3.49) and (3.51) in (3.52) we obtain,(
κ2 − κ

) (
τGu2 − c

(
1
κ

)′)
= 0. (3.53)

Therefore we have the following three subcases:
(B2.1) if κ = 1 and τG , 0, then the relations (3.49) and (3.51) yield{

u1 = − τG
τ′

u2,

u3 = c + ττG
τ′

u2.
(3.54)

Substituting (3.54) in the second equation of (3.8) we obtain

u′2 −

(
τ2 + 1

)
τG − ττG

τ′
u2 = c (τ − τG) . (3.55)

The solution of the previous differential equation is given by

u2 = ce
∫  (τ2+1)τG−ττG

τ′

ds
∫

(τ − τG) ds. (3.56)

Using the relations (3.54) and (3.56), we have the axis U as

U = −u2

(
τG

τ′

)
T + u2N +

(
c +

ττG

τ′
u2

)
B. (3.57)

Differentiating (3.57) and using the Eqs. (2.2) and (2.3) gives U̇ = 0. Hence U is a left-invariant vector
field. Thus, α is a Darboux helix. So, we can give the following theorem.
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Theorem 5. Every unit speed curve α with the curvatures κ = 1 and τ , 0 in three dimensional Lie
group G is a Darboux helix with the axis given by

U = −u2

(
τG

τ′

)
T + u2N +

(
c +

ττG

τ′
u2

)
B, (3.58)

where τG , 0 and u2 (s) , constant is given by (3.56).

(B2.2) if κ = constant and τG = 0, then the relations (3.49) and the first and third equations of (3.8) we
obtain

−

(
τ

κ

)′
u1 = 0, (3.59)

Here, we have the following cases:
(i) if u1 = 0 for all s, then the first equation of (3.8) u2 (s) = 0 which is contradiction;
(ii) if τ

κ
= constant, then τ = constant which is a contradiction with the assumption that ω is not a

constant vector.
Then, we can give the following corollary.

Corollary 7. There is not any Darboux helix α with the curvature κ = constant in the commutative Lie
group G if 〈U,N〉 = u2 , constant.

(B2.3) if κ , constant and τG , 0, then the relations (3.49)–(3.52) yield
u1 = 0,

u2 = c ( 1
κ )
′

τG
,

u3 = c
κ
.

(3.60)

Therefore, the axis of α is given by

U = c

(
1
κ

)′
τG

N +
c
κ

B, (3.61)

where c ∈ R0. Differentiating (3.61) and using the Eqs. (2.2) and (2.3) gives U̇ = 0. Hence U is a
left-invariant vector field. Thus, α is a Darboux helix. So, we can give the following theorem.

Theorem 6. Every unit speed curve α with the curvatures κ , constant and τ , 0 in three dimensional
Lie group G is a Darboux helix with the axis given by

U = c

(
1
κ

)′
τG

N +
c
κ

B, (3.62)

where τG , 0 and c ∈ R0.

Corollary 8. Every Darboux helix α with the curvatures κ , constant and τ , 0 in three dimensional
Lie group G is a general helix but not a slant helix with the same axis given by (3.62).
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