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1. Introduction

The domain of fractional calculus is interested with the generalization of the classical integer order
differentiation and integration to an arbitrary order. Fractional calculus has found important
applications in different fields of science, especially in problems related to biology, chemistry,
mathematical physics, economics, control theory, blood flow phenomena and aerodynamics, etc (see,
for example, [1-15]. For some recent developments on the existence and uniqueness of solutions for
differential equations nvolving the fractional derivatives, for more information, we advise reading
these papers [16-24] and the references therein. In this literature, we show some contributions of
researchers to the finding of the existence and uniqueness of the solution for the different fractional
differential equations. Bai [16] studied the existence and uniqueness of positive solutions for the
following three-point fractional boundary value problem:

‘Di.x(t) = f(1,x(1)), t€(0,1), g€ (1,2],
x(0) =0, (1.1)
x(1) = Bx(m), n € (0,1),
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where D? denotes the Riemann-Liouville fractional derivative, and 0 < S9! < 1.
Ahmad et al. in [17] discussed the existence and uniqueness of solutions for the following boundary
value problem of fractional order differential equations with three-point integral boundary conditions:

‘Dix(t) = f(t,x()), t€(0,1), ge(1,2],
x(0) =0, (1.2)
x(1) = ozfon x(s)ds, ne(,1),

. o 2
where DY denotes the Caputo fractional derivative of order ¢, and @ € R, — # «.

n
In [18], the authors discussed the existence and uniqueness of solutions for the following nonlinear
fractional differential equations with three-point fractional integral boundary conditions:

‘Dix(r) = f(t,x(1)), 1€(0,1), q€(1,2],
x(0) = 0, (1.3)
x(1) = al’x(n), 1€ (0,1),

where ‘D denotes the Caputo fractional derivative of order g, 17 is the Riemann-Liouville fractional
integral of order p and @ € R, @ # "2,

In [20] existence and uniqueness results are obtained for the following boundary value problem of
fractional order differential equations with three-point fractional integral boundary conditions:

‘D¥(x(t)) = f(t, x(1),c DPx(1)), t€[0,1], @ €(1,2]andp € (0,1),
x(0) =0, (1.4)
bx(1) =c—al’x(n), ne@,1),

where D denotes the Caputo fractional derivative of order g, I” the Riemann-Liouville fractional
integral of order y, f is a given continuous function, and a, b, ¢ are real constants with an'* #
—bI'(B + 2). We are concerned to study the hybrid fractional differential equations (also called the
quadratic perturbations of nonlinear differential equations) because they have been extensively studied
and have achieved a great deal of interest. First time, Dhage and Lakshmikantham in [26] proposed
hybrid differential equations and showed some essential results on this kind of differential equations.
In this class of the equations, the perturbations of the original differential equations are involved in
many ways, for hybrid fractional differential equations, we refer to [25-35] and references therein.

In this paper, we discuss existence and uniqueness results for hybrid fractional differential
equations with three-point boundary hybrid conditions, these results are determined, by applying
fixed point theorems such as Banach’s fixed point theorem and Leray-Schauder Nonlinear Alternative.
Our assumed problem will more complicated and general than the problems considered before and
aforementioned above, we study the existence and uniqueness of solutions for the hybrid fractional
differential equations given by with boundary hybrid conditions where ¢+ € [0,1], v and

1+y
+b#0.

qi€0,1],i=1,...,m,withme N, n e (0,1), and fy+2)

Dy (1) = > I hilt, x(0),° Dl x(0), I x(0) = f(2, x(0,° Dp.x(0), 13, x(1)) @ € (1,2],Band g € (0, 1),
i=1
(1.5)
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[x(t) — ZWhaanzﬁaamﬁmmw:o

al),[x(r) - Z I h(t, (1), D, x(0), 1, X(D) 1=y + bLx (1) — Z I it (), DS, x(2), I x(D)]i=1 = ¢,

(1.6)
‘Dg. denotes the Caputo fractional derivative of order a and Ig+ denotes Riemann-Liouville
fractional integral of order g, and a, b, c are real constants with f, h; € C([0, 1] X R?, R).
This article is structured as follows. In part 2, we introduce notations, definitions, and lemmas.
Next, in part 3, we prove the existence results for problems 1.5 and 1.6 using the fixed point theorem.
Finally, we illustrate the results with examples.

2. Preliminaries

In this section, we present the notation, definitions to be used throughout this article.

Definition 2.1. [25] The Riemann-Liouville fractional integral of order g for 0 continuous function
f 10, +c0) — R is defined as

1 1
ILf(r) = @ fo (t— )" f(s)ds,

where I is the Euler gamma function.

Definition 2.2. [34] Leta > 0andn = [a] + 1. If f € C"([0, 1]), then the Caputo fractional derivative
of order «a defined by

Dy f(1) =

' _ oyra=1 p(n)
o | = s

exists almost everywhere on [0, 1], [a] is the integer part of «.

Lemma 2.3. [4] Leta > > 0and f € L'([0, 1]). Then for all t € [0, 1], we have:
Is.10. f(0) = IGP (@),
‘Dg. g f(2) = (),

DI f(1) = I £ (o).
Lemma 2.4. Let « > 0. Then the differential equation
Dy . f)@) =0
has a solution

-1
f)= ) ct', ¢;eR, j=0,...,m—1,

3

.
I
(=]

where m—1 < a < m.
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Theorem 2.5. [19] Let X be a Banach space, let B be a closed, convex subset of X, let U be an open
subset of B and 0 € U. Suppose that

P : U — B is a continuous and compact map. Then either

(a) P has a fixed point in U, or

(b) there exist an x € QU (the boundary of U) and A € (0, 1) with x = AP(x).

3. Main results

In this section, we show the existence results for the boundary value problems on the interval [0, 1].

Lemma 3.1. Let A(t) be continuous function on [0, 1]. Then the solution of the boundary value problem

CD“ (x(t) — Z I"’ h;(t, x(1),° Df;x(t) Lx(1) =A(), ae((1,2],Bandg < (0,1),
[x(£) — z I8 hi(t, (), D, x(0), I x(D)]1=0 = 0,

all. [x(t) - z I h(t, (1), D, x(0), 1 x(D) 1=y + BLx (D) — z It (), DS, x(0), I x(D))i=1 = ¢,

(3.1
wheret € [0,1], v, nand q; € (0,1),i=1,....,m, m € N,
is given by

x(t) = ILAQ) +

a _ ’)/+(l
t(c — bl A(l) aly."An)) Z 1 i, x(0). DE. x(2), 1%, x(1)). (3.2)

an'*
Ty +2)

Proof. For 1 < @ <2 and some constants ¢y, ¢; € R, the general solution of the equation
“Dj (x(1) - Z I3 ha(t, (). Dy x(2), I, x(1))) = A(0),
can be written as

x(t) = IS AQ) + co + 1t + Z 19 h(t, x(0),° DE.x(8), 1%, (1)), (3.3)

i=1

applying the boundary conditions, we find that

co =0,
and
¢ — bl A(1) - al’™ A
o = ( ) o- A0 (3.4)
an'”*
Iy + 2)
Substituting the values of ¢y, ¢;, we obtain the result, this completes the proof. m]
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Now we list the following hypotheses
(H,) The functions f, h; : [0, 1] X R?® — R are continuous.
(H,) There exist positive functions ¢;, i = 1, ...m with bounds [|¢;|| . , such that

\hi(t, x1,y1,21) — hi(t, X2, ¥2, 22)| < @i(O)(|x1 — x| + |y1 — Yol + |21 — 22D),

fort € [0, 1], (xx, viozx) € R, k=1, 2 and ¢,(¢) € L%([O, I, R Yand 7; € (0,1 —a),i=1,..,m
(H3) There exist positive function ¢ with bounds |1, such that
m

|f (2, x1,y1,21) = f(t, X2, y2, 22)| S Y(@)(Ix1 — x| + |y1 — yol + |21 — 22D),

for t € [0, 1], (xp, yioz2) € R3, k = 1, 2 and (1) € L# ([0, 1], R*) and y € (0, 1 - a).
(H) If A+ A+ O < 1, where A, A and @ are given by

1- 1- -7
] (— 1 gl r i (——E il (—— 1T
_ AR g, 14 )+ , a+y-—p i T
B I'a) an'*” an'*” pary ['(g:)
Tt Tl s+
1 - 1 - 1 -
Wy 2™ Wil i LU o
A= Ta+tq) a Pyt Ta+yl
I'(g + 1)(F(y 2 + b)
n 91y ()
A r(q v
1 - 1- 1-—
Wy (= Il i LU s B4
© = Fa-p) PR e+
rQ —ﬁ)(r( 5D
B
ﬁ — . —
+
P F(B - qi)

Theorem 3.2. Assume that condition (H, — H,) hold, then problems (1.5) and (1.6) have a unique
solution defined on [0, 1]

Proof. Define the space
X ={x:x [{xand ‘Dfx € C(0,1], R), 0 < g, B < 1},

s Lo+
endowed with the norm

|Ix]| = maxefo, il x(D)] + maxze[o,l]llg+X(t)I + maxze[o,uchﬁJ(t)l-
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We put

Fx(1) = f(t, x(0),° Dy, x(0), I, x(1)).

Hix(t) = hit, x(0),C Db x(t), I8 x(2)), i = 1,..,m.  meN.

Obviously, (X, ||x||) is Banach espace. In order to obtain the existence results of problems (1.5) and
(1.6), by Lemma 3.1, we define an operator S : X — X as follows

t(c ~ b3 F)(1) = al FO)m)

Sx(t) = I§. Fx(1) + + 3 I Hix(0).
i=0

anl+y
'ty +2)

+b

Since f, h; continuous, it is easy to see that

_ - _ y+a m
11(c — by F)(1) — a(l}; Fx)(n))) + 3 Igfquix(f)a

an'* :
(g + (e +b) =0

(LS X)) = I;7F (1) + (

and

1-B(~ _ @ _ Iy:—aF
CDE.S 00 = (P Fan) + (e 2D — ally FH0)

T2 - B +b)

I'(y+2)

)+ (3 1P H ().
i=0

Let x,y € X. Then for each ¢ € [0, 1], we have

IS, (Fx = Fy)(1) + |alll§* (Fx = Fy)()

(X)) = (SO < 1(Fx = Fy)() +
|F(y+2) + bl
+ ) TP (Hix = Hiy)(@)
i=0
B (illx = YIDCD) + lal Willx = Iy
< @l -l + oY anma p YO
T

+ ) P ilx =y,
i=0
by the Holder inequality, we have

1 - 1=
gl (—y1-s lalllgl - (——E 1
Ha—u Iz a+

b -
(S0 - (SH@) < 1+ — Jllx =yl + Y/
Te) IR T+ )= 4 py
Ty +2) R VO
1—7',' .
w Bl ()1
Xl —yll+ 0 eyl
LT T g
= Allx—)l,

similary, we have
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1

||w||#<a pyn ﬂ)l-ﬂ Wl (ﬁ)l-ﬂ
1I5.(S)(®) = I5. (S < | + — (151
I'a +q) an'*” ')
I'(g + 1)(| + b))
L'y 2)
1 —
lalif (g ()
TIYTR )y TG ey
I +7v) — I'(g +q)
= Allx - yll,
and
1 -
”w”i(ﬁ)l‘” [ (—/)1‘”
FDE.(S (D) = DE(Sy@] < | + 1 (Ib|
I'a-p) ra - g v b) I'(a)
- +
p Iy + 2)
1 —
lalif (B g ()
aty—H ﬁ — i T
+ ) + Hix =yl
L@ +7)] - F(ﬁ P
= Ollx -yl
Form the inequalities above, we can deduce that
IS x(2) = Syl < (@ + A+ A)llx = yll.
By the contraction principale, we know that problem 3.1 has a unique solution. O
Theorem 3.3. assume that
(D WeputHé = sup h;(1,0,0,0),i=1,...,m, m € N.
1€[0,1]
(2) szere exist tree non-decreasing functions pi,p2,p3 : [0,00) — [0,00) and a function
v e Le([0,1],RT) withu € (0, — 1)
£ (2, x, 3, DI <@ (p1(Ix]) + p2(lyD) + p3(lz]),
fort € [0,1]and (x,y,7) € R3.
(3) There exists a constant Z > 0 such that
Z
> 1 (3.5
Wi(@) + Plls Wao1(Z2) + p2(Z) + p3(2))
Where
lclT(g+ DI2 -+ T2 -p) +I'(g+ 1)) ; ”(ﬁi”%‘(qi - T,-)l )
Wi2) = ( - )+ Z(H +Z— )
(g + DI'Q2 - ) + b = @)

I'(y+2)
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el (qw_ M a ﬁ_ )
L Iy L+ S
e ) " R
@—p
W2 (W)(l + anl+y + an1+y + l+y )
s+t T+ DG+ TP +b)
wryu_LTH i l-n _
+(|a|'7 yﬂ(a+y_'u) H)(1+ ! + ! )+(a+q_’u M+(al_ﬁ -
5 D T B Tere Tap
I( an q q
a+vy)| + bl

I'(y+2)
Then problem (1.5) and (1.6) has at least one solution on [0, 1].

Proof. Define the a ball B, as
B, ={xeX:|xll<r},

where the constant r satisfies

r 2 Wi(r) + [lll Waloi(r) + pa(r) + p3(r).

Clearly, B, is a closed convex bounded subset of the Banach space X. By Lemma 3.1 the boundary
value problems (1.5) and (1.6) are equivalent to the equation

—bIS,Fx(1) —al}}"Fx u
t(c (1 0 (77))+Zlgi Ho()

Sx(r) = I§.Fx(t)+ por (3.6)
I'(y+2) b
N (Il + DI Fx(D| + [alL 7 Fx(m) - A,
ISx(l < Mg Fx(0)] + s ot 0 + ) Hix(1)) 3.7)
b i=1
T+ 7
by the Holder inequality and the hypotheses, we have
1- Ti q_.
Il (2t " I L et M
ISx(O] < (—E———)(p1(r) + pa(r) + p3(r))(1 +—)+Z(H6+r —)
[(@) a5 I(g,)
'ty +2)
1 -
IcIT(@ +7) + (o1(r) + p2(r) + pa(PDIWI lal™ 7 (——E— 1
G aty-—H
[(@ +y) o + b|
Ity +2)
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similary, we have

Il ()t o
UGS HDW] < 1)+ palr) + NIl (— I E 4 "
i (@ +q) an'*”
F(q+1)(r( +2) + b)
1_
|b|<p1<r>+p2(r)+p3<r>)||w||;(ﬁ)'- w il (qw Lyt
+( — )+Z(H(’)+r F(q+lq) L
i=1 !
M@+ D5+ b
(01(r) + () + DIVl (——— —Eyien
+ LA Sl
@+ g+ D=2 4 p)
'ty +2)
and
1_
G Id
FDE.Sx(D] < (p1(r) + palr) + p3(M)IWl1 ( )+ ( s )
e G ML
F( +2)
1_
|b|<p1<r>+p2(r)+p3<r>)||w||;(ﬁ)‘-ﬂ N L e ﬁ_ )i
+ an'™ D Hy )
[(a)l(2 - ﬁ)(r( TR =
(01(r) + () + DIVl (——— B yien
+( LA Sl
T(a + Y2 - B)| - Y
4 T(y +2)
That is to say, we have
IS KOl < Wi(r) + Il Wa(or () + pa(r) + p3(r). (3.8)

Secondly, we prove that S maps bounded sets into equicontinuous sets. Let B, be any bounded set of
X. Notice that f and h; are continuous, therefore, without loss of generality, we can assume that there
isan My and M,,, i = 1,...,m, such that

sup f(t, x(2)," Dy, x(), I, 9.x(1) = My,
1€[0,1]

and
sup h(t, x(1),” Dy +x(1), 1 1 x(t)) = M,,.

te[0,1]
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Now let 0 < #; <, < 1.We have the following facts:

t(c = b(lg. F)(l) —a(IljFx)m)

IS x(tr) = Sx(t)] = S Fx(ty) + g + Z I8 Hix(ty) — I3, Fx(t))
I'(y + 2) 0
(e - bUg, F)(l) —al FOm) K,
pmE ZO I Hix(n)|
I'(y + 2)

5]
(fz _ s)a+1 _ (tl _ S)a+1

<
(@)

f(s,x(5), Do x(s), I, x(s))ds

_ e+l
f (2 = T g, w(5). DR x(s), 1% x(s)ds|

['(a)
_ _ y+a
- tll((c b(Iy. F)(l) a(ly. FX)(U)))
an'*
TGy +2)

m h _ a+l _ _ i+1
+ Z( bl F(q,'()tl 2 hi(s, x(5),° DY, x(s), I%, x(s))ds

5] (t _ )Qi+1 .

ﬁhxs, x(5)," D x(s), I, x(5)))
B Mty — 1) Mt} —15)+ (t, — )"
T T(a+1) [(@+1)

N My —1)% M, (1] = 65) + (= 1)
2 T T Tarn )
2My(ty = 1)* < 2M (1 — 1)

L(a+1) +; [(gi+ 1)

we can get
IS x(t7) — Sx(t))] — Oas t, — 1.

Similarly, we can obtain that

II5.S x(t)) = I§.S x(1,)] — Oast, — 14,
|LD S x(t) - D8+SX(l2)| —> Qast, — 1.

This implies that

IS x(21) = Sx(t)|| — Oas t, — 1.
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Finally, we let x = AS x for 4 € (0, 1). Due to (3.8) and for each ¢ € [0, 1] we have

[lcll = {148 xll < Widllxdl) + [yl Wator (llxll) + p2(lixl]) + p3ClixlD)-

That is to say,
Jlxll

<1
WidllxdD) + lll WaGor (lxll) + p2(llxll) + p3ClixID)
From (3.5), there exists Z > 0 such that x # Z. Define a set

O={eX:|yl=<Z}.

The operator S : O — X is continuous and completely continuous.
By the definition of the set O there is no x € 9O such that x = AS x for some 0 < 4 < 1.
Consequently, by Theorem 2.5, we obtain that S has a fixed point x € O which is a solution of problems

(1.5) and (1.6). This is the end of the proof. O
4. Examples

In this section, we give two examples to illustrate the main results.

4.1. Example 1

Consider the following fractional differential equation

4 3 sin(r(1+£%)

cn3 _ qi 17. — |X| c % %
DO+(.X(I) l; IO+H,X(t)) = 61(4 N l’)2 1+ |X| + (4 N Sinz(l'))z (l D +x(t)| + |10+x(t)|),
3
[x(t) = X I H(®)]i=o = 0, 4.1)

i=1
1 3 3
2o [0 = BTG Hx(O)] oy + 3060 = B Ig Hix0)]i = 5.

We take
_% _9 _2 _1
=91 T100 PT30 HTg
6 2 1
T1=§, Tzzg, T3=§

3 7 i 1+7 1 3 7

£t x(0.° DAx(), I x(1) = eXp(:f(lﬂ t;t ) 1|f||x| Hrrwem e R ECUEC
3 7 2 ¢ % 7

I x5 Do, oty = (P P0XD o)+ exp (-,

3

10" vty +¢ DE x(r) + 1

3
e V2 sin(rt?) cos x(t) +¢ Dy, x(2) L V2t cos(rt)
(V3+ V5e Y2y e DLxn+ 1 (V3+ V5eVy

ho(t, x(0.C D x(t), I3 x(0) = 15, (),
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s, 30 Dx(0, 1x0) = P log(x(r) + 1)+ cos ‘D o) + sin(If 1),

We can show that

1 3 R 7 o 1
|F(x(1)) = Fy@) < 1—6(|x =Y+ 1°Dg.x = Dy.yl + 5. x = Dy, y)),
1 3 3 7 7
|Hy(x(2)) — Hi(y(D))| < E(lx =Y +1°Dg.x = Dy, yl + 5. x = Dy, yl),
exp( V2r) PR 7 7
|Ha(x(1)) — Hy(y(1)] < P (Ix =yl + [°Dg.x = Dguyl + 5. x = 1. yD),

(V3 + V5 exp( V21))>

exp(—21) el .3 7 7
[Ha(x(0) = Hio@)] < =2 (k = Y1+ [Dg,x = Dyl + I x = 53,
where
bl gl g exp(¥E) )
16 10 (V3 + V5exp(V21)) 10

Then, we have

llyllr =~ 0.0423, llg1llz, =~ 0.0356, ll$2ll, = 0.05114, llpsll-, ~ 0.0495,
and '
A~ 0.2109, A ~ 0.1528, O ~ (0.2276,
and
A+A+60=~=05914 < 1.
By Theorem 3.2, we know that proplem 4.1 has a unique solution defined on [0, 1].

4.2. Example 2

Consider the following fractional differential equation

s 2 €—4t 3 e—4t 1
‘Dy.(x(t) = X, I§. Hix(1)) = ~g SinG® + 110.x(1) + — Do),
i=1
2
[x() = X I H(®)]i=o = 0, (4.2)
i=1
1 2 ) 2 ) 1
wolo. [x(0) - zl I Hx ()] 21 + 550x(0) — Zl I Hix(D)=) = 7

We choose
2 100 11 1 1
= —, = —, = —, = —, Ty = —.
=3 =71 7713 T 2750
1 8 e_2t X | 1 8 —ac_ L
£t 2(0) DA, . x(0) = S sinGh ) + g x(0) + % D),
e x| 1 s D% x t

£

8
ha (2, x(2), D% x(0), I3, x(1)) = T Gt sin()? 107
1(t, x()," D3 x(1), 1. (1)) 5+021+ |« 16Ox+(4+sin2(x))2+10
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(2. (0. D x(1). ,§+x(t)) _ 1 sin(x(t) + Dglx(1)) + sin Iéx(t)) N %).

1
2 x(0) + DEx(0) + 1

We can demonstrate that

8 8
(2, x(2), D x(2), 15, x())| < Y(O)(p1(|x]) + p2(I°D¥ x]) + P31y x0)),

8 8 8 8
hl(ta x(t)’c D%X(t), I(;_.X(t)) - hl(ta y(t)’t D%y(t% [3+)’(t)) < % |.X - yl + |CD%-X = D%ﬂ + |IS+X - 13+)7|),

8
9

8 8 8 8
ha(t, x(£), DO x(D), 13, x(2)) — ha(2,y,C D%y, I2,y) < L(1x — y| + [{D%x = D3vy| + |[3,x — I2.y]),

where
o) = e 1 ot
=300 91 92575
(W)= . poDFal) = = FDhal,  py(lLal) = |11
x|) = —1x, x|) = —|°Dw x|, ' x|) = —|I, x].
P1 20 P2 30 P3 0 60 0
Hence we have
1 1 1 1
||¢1||Tl = 0'0625, ||¢2||T2 ~ 0'2714’ H() = E; H() = @'

After calculation, it ensues by 3.5 that the constant Z provides the inequality Z > 31,9308. Since all
the stipulations of theorem 3.3 are completed, the problem 4.2 has at least one solution on [0, 1].

5. Conclusions

In this article, we have presented some sufficient conditions include the existence of solutions for a
kind of hybrid fractional differential equations inclose fractional Caputo derivative of order 1 < a < 2.
Our results depend on a fixed point theorems such as Banach’s fixed point theorem and Leray-Schauder
nonlinear alternative. Our results prolong and complete those in the literature.
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