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Abstract: In this article, we study the impact of fear on the dynamics of a three species food chain
model. We propose a model with the assumption that the growth rate of intermediate predator reduces
at the cost of fear due to top predator, and the growth rate of prey is suppressed due to the fear of the
intermediate predator. We carry out the existence of equilibria, local stability analysis and bifurcation
analysis. Our numerical simulation reveals that for a low cost of the fear, system remains chaotic while
increase in fear factor leads to stability. Even the large cost of fear causes the population to become
extinct. We conclude that the fear effect can stabilize the chaotic dynamics of the system.
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1. Introduction

Chaotic behaviour exists in many natural systems, such as weather and climate. We can study this
behaviour using a nonlinear mathematical model. Controlling chaos or stabilizing chaotic population
dynamics becomes a challenge. Small manipulation in a chaotic system can control chaos, for example,
stabilize an unstable periodic orbit. This manuscript mainly concerns with the chaotic dynamics of
three species food chain model. Hastings and Powell [1] shows the appearance of chaos in a natural
food chain or web models. Many researchers [2–5] have studied the Hastings and Powell model [1] by
incorporating some biological factors such as alternative food, Allee effects, refugia, disease, fear.

In ecology, the predator-prey interaction happens at higher trophic levels and predators have an
impact on prey populations which may be direct and indirect or both [6]. In the direct effect, the
predator predates prey while in the indirect effect, the predator induces fear in the prey population
and this fear can change the prey’s behaviour [7]. The changing in the behaviour of prey includes
foraging and reproduction [8, 9]. Zanette et al. [9] have done fieldwork on song sparrows during the
breeding season while eliminating the direct predation to observe the impact of fear. A reduction of
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40% reproduction has been found in the number of offspring due to the fear of predation alone. Due
to the fear effect, the prey shows a variety of antipredator responses, including different psychological
changes, habitat changes, and foraging. For example, birds respond to their antipredator defences,
by escaping from their homes [10] and mule deer reduces foraging time due to predation danger of
mountain lions [11].

The proposed model of Wang et al. [12] shows a reduction in the production of prey due to fear
of the predator. They observed that the high level of fear could stabilize the system (by excluding
population oscillations). Further, they found that the fear effect could change population oscillations
from a supercritical Hopf bifurcation to subcritical Hopf bifurcation, which induces multiple limit
cycles. The impact of fear has been investigated on prey-predator systems with refuge and allee effect
[13, 14]. Fear effect also has been observed on discrete, delayed, diffusive, and eco-epidemiological
models [15–20]. In the fear-induced prey-predator models, most of the prey-predator systems are
studied with Holling type-II functional response. Pal et al. [21] proposed a prey-predator model, where
the interaction between prey and predator has been followed by Beddington-DeAngelis functional
response. Based on their results, they conclude that the fear effect has both stabilizing and destabilizing
effects.

Chaotic dynamics in tritrophic food chain model has recently been incorporated by Panday et al. [4].
For the first time, they assumed that the growth rate of prey and the middle predator is suppressed due
to the cost of fear of middle and top predator, respectively. Further, they conclude that fear factors can
control chaotic dynamics.

Our goal in this manuscript is to incorporate the fear factor in an earlier studied model [22, 23] and
since the system is chaotic so our effort would be to stabilize the dynamics of a proposed model system
with the help of fear factors.

2. Model formulation

Here we consider a chaotic model [22,23], describes the interaction of the species in the food chain
of prey, specialist predator and top specialist predator. The nonlinear model system is described as
follows:

du1

dt
= a0u1 − b0u2

1 −
w0u1u2

d0 + u1
,

du2

dt
=

w1u1u2

d1 + u1
−

w2u2u3

d2 + u2
− a1u2, (2.1)

du3

dt
= −c3u3 +

w3u2u3

d3 + u2
.

Here, u1, u2 and u3 are the respective population densities of prey, intermediate predator and top
predator. a0, a1, b0, d0, d1, d2, d3,w0,w1,w2,w3 and c3 are positive constants. a0 represents the intrinsic
growth rate of prey u1, a1 is the mortality rate of the predator u2 in the absence of u1 only. The
parameters w0,w1,w2 are the maximum value which per capita growth rate can attain. d0, d1, d2, and
d3 are half saturation constants corresponding to Holling type-II functional response, b0 is the rate of
competition among individuals of prey, parameter c3 is the mortality rate of the top predator in the
absence of intermediate predator, and w3 is measure of its assimilation efficiency.
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It is observed from the field experiments that the production reduces due to fear effects. The fol-
lowing assumptions are made to incorporate fear effect in model system (2.1):

(i) We assume that due to fear of top predator u3, the growth rate of intermediate predator u2 reduces.
Therefore the modified growth rate change to w1

1+ f2u3
(a monotonically decreasing function of both

f2 and u3).
(ii) We also assume that the growth rate of prey reduces due to fear of intermediate predator and the

growth rate change to a0
1+ f1u2

, (a monotonically decreasing function of both f1 and u2).

Here g1( f1, u2) = 1
1+ f1u2

and g2( f2, u3) = 1
1+ f2u3

are fear functions, which account for the cost of
anti-predator defence due to fear, where f1 and f2 represent the fear parameters (level of fear) of prey
and intermediate predator, respectively. From the biological point of view, it is reasonable to assume
that

g1(0, u2) = 1, g1( f1, 0) = 1, lim
f1→∞

g1( f1, u2) = 0, lim
u2→∞

g1( f1, u2) = 0,

∂g1( f1, u2)
∂ f1

< 0,
∂g1( f1, u2)

∂u2
< 0,

(2.2)

and

g2(0, u3) = 1, g2( f2, 0) = 1, lim
f2→∞

g2( f2, u3) = 0, lim
u3→∞

g2( f2, u3) = 0,

∂g2( f2, u3)
∂ f2

< 0,
∂g2( f2, u3)

∂u3
< 0.

(2.3)

By using above assumptions, the model system (2.1) takes the form:

du1

dt
=

a0u1

1 + f1u2
− b0u2

1 −
w0u1u2

d0 + u1
,

du2

dt
=

w1u1u2

d1 + u1
·

1
1 + f2u3

−
w2u2u3

d2 + u2
− a1u2, (2.4)

du3

dt
= −c3u3 +

w3u2u3

d3 + u2
.

We analyze the model system (2.4) with the following positive initial conditions

u1(0) > 0, u2(0) > 0, u3(0) > 0. (2.5)

The rest of the paper is organised as follows: In section 3, the existence of equilibria is discussed.
The local stability and bifurcation analysis are investigated in sections 4 and 5, respectively. Numerical
simulation is discussed in section 6. Finally, the manuscript ends with a discussion in section 7.

3. Existence of equilibria

In this section, the existence of non-negative equilibria are discussed and further, stability analysis of
these equilibrium points are established. The following non-negative equilibrium points are obtained:
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(i) Trivial equilibrium point E0(0, 0, 0), corresponds to the total extinction of prey and predator
species.

(ii) Axial equilibrium point E1(a0/b0, 0, 0), corresponds to the extinction of the predator species.
(iii) Boundary equilibrium point E2(ũ1, ũ2, 0), corresponds to the extinction of the top predator species,

where
ũ1 =

a1d1

w1 − a1
,

and ũ2 is the positive root of the quadratic equation

f1w0ũ2
2 + (w0 + b0ũ1 f1(d0 + ũ1))ũ2 − (a0 − b0ũ1)(d0 + ũ1) = 0. (3.1)

The planar equilibrium E2(ũ1, ũ2, 0) exists if the following conditions are satisfied

w1 > a1 and a0 + b0d1 <
a0w1

a1
. (3.2)

(iv) We obtain positive equilibrium point E∗(u∗1, u
∗
2, u

∗
3), by solving these system of nonlinear equa-

tions:
a0

1 + f1u2
− b0u1 −

w0u2

d0 + u1
= 0,

w1u1

d1 + u1
·

1
1 + f2u3

−
w2u3

d2 + u2
− a1 = 0, (3.3)

−c3 +
w3u2

d3 + u2
= 0.

Solving the following Eq (3.3), we obtain,

u∗2 =
c3d3

w3 − c3
, (3.4)

value of u∗1 is obtained by solving the equation

b0u1
2 +

(
b0d0 −

a0

1 + f1u∗2

)
u1 +

(
w0u∗2 −

a0d0

1 + f1u∗2

)
= 0, (3.5)

and u∗3 is obtained from the equation

f2w2

d2 + u∗2
u2

3 +

(
w2

d2 + u∗2
+ a1 f2

)
u3 +

(
a1 −

w1u∗1
d1 + u∗1

)
= 0. (3.6)

From Eqs (3.4), (3.5) and (3.6), it is clear that, for the existence of positive equilibrium point
following conditions should be satisfied:

w3 > c3, u∗1 >
a1d1

w1 − a1
,w0u∗2 <

a0d0

1 + f1u∗2
and b0d0 >

a0

1 + f1u∗2
. (3.7)

Now, in order to study the behavior of solution near the equilibrium points, we compute the Jacobian
matrix of the model system (2.4) at any point (u1, u2, u3), which is given by

JE =


A11 A12 0
A21 A22 A23

0 A32 A33

 (3.8)
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where,

A11 =
a0

1 + f1u2
− 2b0u1 −

w0u2

d0 + u1
+

w0u1u2

(d0 + u1)2 , A12 = −
w0u1

d0 + u1
−

a0 f1u1

(1 + f1u2)2 ,

A21 =
w1d1u2

(d1 + u1)2(1 + f2u3)
, A22 =

w2u2u3

(d2 + u2)2 −
w2u3

d2 + u2
− a1 +

w1u1

(d1 + u1)(1 + f2u3)
,

A23 = −
w2u2

d2 + u2
−

f2w1u1u2

(d1 + u1)(1 + f2u3)2 , A32 =
w3d3u3

(d3 + u2)2 and A33 = −c3 +
w3u2

d3 + u2
.

4. Local stability analysis

For local asymptotic stability, the solutions must approach to an equilibrium point under initial
conditions close to the equilibrium point. Here, the criterion for local stability of the equilibria are
obtained by linearizing the model system around the corresponding equilibrium point.

Theorem 1.

(a) The trivial equilibrium point E0(0, 0, 0) is always unstable.
(b) Axial equilibrium point E1(a0/b0, 0, 0) is locally asymptotically stable if a1 >

a0w1
a0+b0d1

.
(c) The equilibrium point E2(ũ1, ũ2, 0) is locally asymptotically stable if b0 >

w0ũ2
(d0+ũ1)2 and c3 >

w3ũ2
d3+ũ2

.

Proof.

(a) The Jacobian matrix at trivial equilibrium point E0(0, 0, 0) is given by

JE0 =


a0 0 0
0 −a1 0
0 0 −c3


and the eigenvalues of the Jacobian matrix JE0 are a0,−a1 and −c3. So the equilibrium point
E0(0, 0, 0) is always unstable.

(b) The Jacobian matrix at the axial equilibrium point E1(a0/b0, 0, 0) is

JE1 =


−a0 −

(
a0w0

a0 + b0d0
+

a2
0 f1

b0

)
0

0 −a1 +
a0w1

a0 + b0d1
0

0 0 −c3


and the eigenvalues of JE1 are −a0,−c3 and −a1 +

a0w1

a0 + b0d1
. Hence E1(a0/b0, 0, 0) is local asymp-

totically stable if a1 >
a0w1

a0 + b0d1
.

(c) The Jacobian matrix associated with E2(ũ1, ũ2, 0) is

JE2 =


P1 −P2 0

P3 0 −P4

0 0 P5


AIMS Mathematics Volume 5, Issue 2, 828–842.
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where,

P1 = ũ1

(
−b0 +

w0ũ2

(d0 + ũ1)2

)
, P2 =

w0ũ1

d0 + ũ1
+

a0 f1ũ1

(1 + f1ũ2)2 ,

P3 =
w1d1ũ2

(d1 + ũ1)2 , P4 =
w2ũ2

d2 + ũ2
+

f2w1ũ1ũ2

d1 + ũ1
and P5 = −c3 +

w3ũ2

d3 + ũ2
.

The corresponding characteristic equation of the matrix JE2 is

(P5 − λ)(λ2 − P1λ + P2P3) = 0. (4.1)

The characteristic Eq (4.1) have negative real parts if P5 < 0 and P1 < 0. Hence the equilibrium
point E2(ũ1, ũ2, 0) is locally asymptotically stable if the conditions stated in the Theorem 1(c) are
satisfied.

�

Theorem 2. The positive equilibrium E∗(u∗1, u
∗
2, u

∗
3) is locally asymptotically stable if the following

conditions hold:

b0u∗1 >
w0u∗1u∗2

(d0 + u∗1)2 +
w2u∗2u∗3

(d2 + u∗2)2 (4.2)

b0u∗1α +
b0w2βu∗1u∗2u∗3

(d2 + u∗2)2 >
b2

0w2u∗1
2u∗2u∗3

(d2 + u∗2)2 +
w2w3d3u∗2u∗3

2γ

(d2 + u∗2)2(d3 + u∗2)2 + αβ, (4.3)

where, α, β and γ are given in (4.6).

Proof. The Jacobian matrix associated with the positive equilibrium E∗(u∗1, u
∗
2, u

∗
3) is

JE∗ =


J11 J12 0

J21 J22 J23

0 J32 0

 . (4.4)

and corresponding characteristic equation is

σ3 + ρ1σ
2 + ρ2σ + ρ3 = 0, (4.5)

where,

ρ1 = −(J11 + J22),
ρ2 = J11J22 − J12J21 − J23J32,

ρ3 = J11J23J32,

ρ1ρ2 − ρ3 = (J11 + J22)(J12J21 − J11J22) + J22J23J32,

with

J11 = −b0u∗1 +
w0u∗1u∗2

(d0 + u∗1)2 , J12 = −
w0u∗1

d0 + u∗1
−

a0 f1u∗1
(1 + f1u∗2)2 , J21 =

w1d1u∗2
(d1 + u∗1)2(1 + f2u∗3)

,
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J22 =
w2u∗2u∗3

(d2 + u∗2)2 , J23 = −
w2u∗2

d2 + u∗2
−

f2w1u∗1u∗2
(d1 + u∗1)(1 + f2u∗3)2 and J32 =

w3d3u∗3
(d3 + u∗2)2 .

The interior equilibrium will be locally asymptotically stable if the coefficients of the characteristic
Eq (4.5), ρ1, ρ2 and ρ3, are satisfy the Routh-Hurwitz stability criterion, i.e. ρ1 > 0, ρ3 > 0 and
ρ1ρ2 − ρ3 > 0.

Straightforward computation shows that ρ1 > 0 and ρ3 > 0, if

−b0u∗1 +
w0u∗1u∗2

(d0 + u∗1)2 +
w2u∗2u∗3

(d2 + u∗2)2 < 0,

which is true from the condition (4.2).

Also since,

ρ1ρ2 − ρ3 = (J11 + J22)(J12J21 − J11J22) + J22J23J32

=

{
− b0u∗1 +

w0u∗1u∗2
(d0 + u∗1)2 +

w2u∗2u∗3
(d2 + u∗2)2

}
×

{
−

(
b0u∗1 +

w0u∗1u∗2
(d0 + u∗1)2

)
×

w2u∗2u∗3
(d2 + u∗2)2

−

( w0u∗1
d0 + u∗1

+
a0 f1u∗1

(1 + f1u∗2)2

)
×

w1d1u∗2
(d1 + u∗1)2(1 + f2u∗3)

}
−

w2u∗2u∗3
(d2 + u∗2)2 ·

w3d3u∗3
(d3 + u∗2)2

( w2u∗2
d2 + u∗2

+
f2w1u∗1u∗2

(d1 + u∗1)(1 + f2u∗3)2

)
= b0u∗1α +

b0w2βu∗1u∗2u∗3
(d2 + u∗2)2 −

b2
0w2u∗1

2u∗2u∗3
(d2 + u∗2)2 − αβ −

w2w3d3u∗2u∗3
2γ

(d2 + u∗2)2(d3 + u∗2)2 > 0,

which is true, using the condition (4.3).

Where,

α =
w0w2u∗1u∗2

2u∗3
(d0 + u∗1)2(d2 + u∗2)2 +

w1d1u∗2
(d1 + u∗1)2(1 + f2u∗3)

( w0u∗1
d0 + u∗1

+
a0 f1u∗1

(1 + f1u∗2)2

)
,

β =
w0u∗1

d0 + u∗1
+

a0 f1u∗1
(1 + f1u∗2)2 and γ =

w2u∗2
d2 + u∗2

+
f2w1u∗1u∗2

(d1 + u∗1)(1 + f2u∗3)2 .

(4.6)

�

In this work, our primary attention is to stabilize the chaotic dynamics using fear parameters. We
observe from the numerical simulation that the model system obtains stable dynamics after a limit
cycle oscillation. Therefore the occurrence of Hopf bifurcation is obvious.

5. Hopf-Bifurcation analysis

Hopf bifurcation is a point or a critical value of a parameter where the system stability changes and
periodic solution arises. In the next theorem, we prove the existence of Hopf bifurcation, and for this,
we choose fear parameter f1 as a bifurcation parameter.
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Theorem 3. When the fear parameter f1 crosses a critical value f ∗1 , then the system enters into Hopf-
bifurcation around the positive equilibrium E∗ if the following conditions hold:

ρ1( f1
∗) > 0, ρ3( f1

∗) > 0, ρ1( f1
∗)ρ2( f1

∗) − ρ3( f1
∗) = 0 and [ρ1( f1

∗)ρ2( f1
∗)]′ , ρ′3( f1

∗). (5.1)

Proof. Since we have seen that the interior equilibrium is locally asymptotically stable and we know
that the model system loses its stability due to change in some parameter value. Hence, we choose the
fear parameter f1 as the bifurcation parameter. If there exists a critical value f1

∗ such that

ρ1( f1
∗)ρ2( f1

∗) − ρ3( f1
∗) = 0.

For f1 = f1
∗ the characteristic Eq (4.5) must be of the form

(σ2( f1
∗) + ρ2( f1

∗))(σ( f1
∗) + ρ1( f1

∗)) = 0, (5.2)

the above equation has three roots −ρ1( f1
∗), i

√
ρ2( f1

∗) and −i
√
ρ2( f1

∗). To show Hopf bifurcation
occurs at f1 = f1

∗, we need to satisfy transversality condition

d Re(σ( f1))
d f1

∣∣∣∣∣
f1= f1∗

, 0.

For all f1, the roots are in general of the form

σ1( f1) = µ( f1) + iν( f1),
σ2( f1) = µ( f1) − iν( f1),
σ3( f1) = −ρ1( f1).

Now, we shall verify the transversality condition

d Re(σ j( f1))
d f1

∣∣∣∣∣
f1= f1∗

, 0, j = 1, 2.

Substituting σ j( f1) = µ( f1) ± iν( f1), into (5.2) and calculating the derivative, we have

K( f1)µ′( f1) − L( f1)ν′( f1) + M( f1) = 0,
K( f1)µ′( f1) + L( f1)ν′( f1) + N( f1) = 0,

(5.3)

where
K( f1) = 3µ2( f1) + 2ρ1( f1)µ( f1) + ρ2( f1) − 3ν2( f1),
L( f1) = 6µ( f1)ν( f1) + 2ρ1( f1)ν( f1),
M( f1) = µ2( f1)ρ′1( f1) + ρ′2( f1)µ( f1) + ρ′3( f1) − ρ′1( f1)ν2( f1),
N( f1) = 2µ( f1)ν( f1)ρ′1( f1) + ρ′2( f1)ν( f1).

Notices that µ( f1
∗) = 0, ν( f1

∗) =
√
ρ2( f1

∗), then we have

K( f1
∗) = −2ρ2( f1

∗), L( f1
∗) = 2ρ1( f1

∗)
√
ρ2( f1

∗),

M( f1
∗) = ρ′3( f1

∗) − ρ′1( f1
∗)ρ2( f1

∗), N( f1
∗) = ρ′2( f1

∗)
√
ρ2( f1

∗).
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Solving µ′( f1
∗) from Eq (5.3) we get,

dRe(σ j( f1))
d f1

∣∣∣∣∣∣
f1= f1∗

= µ′( f1) f1= f1∗ = −
L( f1

∗)N( f1
∗) + K( f1

∗)M( f1
∗)

K2( f1
∗) + L2( f1

∗)

=
1
2
ρ′3( f1

∗) − (ρ1( f1
∗)ρ2( f1

∗))′

ρ2
1( f1

∗) + ρ2( f1
∗)

, 0.

If [ρ1( f1
∗)ρ2( f1

∗)]′ , ρ′3( f1
∗) and

σ3( f1
∗) = −ρ1( f1

∗) < 0.

Thus the transversality conditions hold and hence Hopf-bifurcation occurs at f1 = f1
∗. �

From numerical simulation, we observed that the Hopf bifurcation occurs with respect to the fear
parameter f1 at the critical value f ∗1 = 0.02769 around the equilibrium point (24.58,10.77,5.839) and
also occurs with respect to the fear parameter f2 at the critical value f ∗2 = 0.5268 around the equilibrium
(35.24,10.77,0.8819). The parameters used in the calculation, for the bifurcation points, are fixed as
given in Figure 1.

6. Numerical simulation

The main goal of this manuscript is to control the chaotic dynamic of the model system (2.1). For
this purpose, we have proposed a mathematical model (2.4) by incorporating a biological factor of
fear. Model system (2.1) has been studied in literature by many authors [22, 23]. The model system
(2.1) exhibits chaotic attractor, which can be seen in Figure 1. When we increase the value of the
intrinsic growth rate of prey a0, the system shows a chaotic dynamic in the range 1.96 ≤ a0 ≤ 2.
These changes can be seen from a bifurcation diagram plotted in Figure 2. From Figure 3, we observe
that the model system enters into a chaotic dynamic from a stable focus via limit cycle oscillation and
period-doubling. It is noticed that when f1 = f2 = 0 then our proposed model (2.4) is same as an earlier
studied model [22–24].

Figure 1. Three dimensional phase plot of the model system (2.4) depicting chaotic attractor
for f1 = f2 = 0, with a0 = 2, b0 = 0.05,w0 = 1, d0 = 10,w1 = 2.0, d1 = 10,w2 = 1.5, d2 =

10, a1 = 1, c3 = 0.7,w3 = 2, d3 = 20.
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(a) (b) (c)

Figure 2. The bifurcation diagram of the model system (2.4) corresponding to the parameter
a0, when f1 = f2 = 0 i.e., when there is no impact of fear. Other parameters are same as in
Figure 1.

(a) (b)

(c) (d)

Figure 3. Phase portrait of the model system (2.4) depicts (a) stable focus for a0 = 1.3 (b)
limit cycle oscillation for a0 = 1.5 (c) period-doubling for a0 = 1.7 and (d) chaotic dynamics
for a0 = 2. Other parameters are same as in Figure 1.

Next, we studied the impact of fear on the dynamics of the model system (2.4) and observed that
in the absence of fear (i.e., f1 = f2 = 0), the model system exhibits chaotic dynamics. Further, by
varying f1 and f2, we investigate the effect of fear on the system dynamics. Firstly, we investigate the
impact of fear of intermediate predator ( f1) on prey while the fear of top predator on the intermediate
predator is absent, i.e., f2 = 0. We observe that the increase in fear effect f1 makes the system dynamics
(2.4) stable from chaotic, which can be seen by a bifurcation diagram plotted in Figure 4. The system
remains chaotic for the low cost of fear in prey growth. However, an increased cost of fear ( f1 ≥ 0.03)
stabilizes the system dynamics from chaotic to stable focus, see Figure 5. From Figure 6, it is observed
that above the threshold value of f1 = 0.08, the extinction of top predator population is possible,
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whereas prey and intermediate predator shows stable coexistence. Next, we consider the fear of top
predator ( f2), which reduces the growth rate of an intermediate predator where the fear of intermediate
predator is absent, i.e., f1 = 0. It is observed that an increase in the fear parameter f2 makes system
(2.4) stable from a chaotic dynamics, see Figures 7 and 8. The bifurcation diagram illustrates that the
chaotic dynamics observed for the low cost of fear while the stable dynamics observed at a higher cost
of fear ( f2 ≥ 0.6). We have also observed that the large value of f2( f2 = 500), top predator goes to be
extinct, whereas prey and intermediate predator population remain stable (can be seen in Figure 9).

(a) (b) (c)

Figure 4. The bifurcation diagram of the model system (2.4) corresponding to the parameter
f1, when f2 = 0 i.e., when there is no impact of fear of top predator on intermediate predator.
Other parameters are same as in Figure 1.

(a) (b)

(c) (d)

Figure 5. Phase portrait of the model system (2.4) depicts (a) chaotic dynamics for f1 =

0.0003 (b) period-doubling for f1 = 0.004 (c) limit cycle oscillation for f1 = 0.015 and (d)
stable focus for f1 = 0.035. Other parameters are same as in Figure 1.
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Figure 6. The figure depicts the extinction of top predator population at very high cost
of fear f1 = 0.09, whereas prey and intermediate predator show stable coexistence. Other
parameters are same as in Figure 1.

(a) (b)

(c) (d)

Figure 7. Phase portrait of the model system (2.4) depicts (a) chaotic dynamics for f2 =

0.001 (b) period-doubling for f2 = 0.02 (c) limit cycle oscillation for f2 = 0.1 and (d) stable
focus for f2 = 0.7. Other parameters are same as in Figure 1.
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(a) (b) (c)

Figure 8. The bifurcation diagram of the model system (2.4) corresponding to the parameter
f2, when f1 = 0 i.e., when there is no impact of fear of intermediate predator on prey. Other
parameters are same as in Figure 1.
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Figure 9. The figure shows the extinction of top predator population at very high cost of
fear f2 ( f2 = 500), whereas prey and intermediate predator show stable coexistence. Other
parameters are same as in Figure 1.
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Figure 10. Bifurcation diagram of model system (2.4) in f1 − f2 parametric space. System
(2.4) dynamics change from chaos to stable focus. For higher values of f1 and f2 population
extincts.

Next, our investigation is to observe the dynamics of the model system (2.4) in the presence of both
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fear factors ( f1 and f2). From Figure 10, we observe that for small values of fear factors the system
dynamics remain chaotic and the increased value of f1 or f2 or both changes system dynamics from
chaos to stable focus. The chaotic or higher periodic oscillations change to period-doubling, period-
doubling to limit cycle and limit cycle to stable focus, as we increase the cost of fear factors.

7. Conclusions

In this work, we have analysed a three species food chain model (2.4) incorporating fear factors
in the classical model (2.1). Next, analytically, we have proved the existence of biological feasible
equilibrium points. Further, the local stability analysis of the proposed model system (2.4) is done
corresponding to existing equilibria. Since the model system dynamics transits from the limit cycle
to stable focus, hence there occurs Hopf bifurcation. Therefore we have also done Hopf bifurcation
analysis, where we have proved that the system enters into Hopf bifurcation with the fear parameters
f1 and f2 as bifurcation parameters.

The model system (2.4) exhibits chaotic dynamics, and a chaotic attractor is observed (Figure 1).
From Figures 2 and 3, we observe that increase in the intrinsic growth rate of prey (a0) leads to chaotic
dynamics which can be controlled by fear factors. Further, from Figures 4 and 5, it is observed that
the increase in fear factor f1 makes the system stable from chaotic dynamics (even in the absence of
cost of fear of top predator in intermediate predator). Even the large cost of fear causes a population
to become extinct, see Figure 6. Similarly, increase in fear factor f2 makes system (2.4) stable, which
has been shown in Figures 7 and 8. Also, the large cost of fear causes the top predator population to
become extinct (Figure 9).

It should be noted that these chaotic dynamics hold for a small cost of fear. If we increase the cost of
fear, then the system dynamics change from chaos to stable focus. The model system remains chaotic
for the low cost of fear, whereas when we increase the value of f1 or f2 or both, then the system tends
to stable dynamics (see, Figure 10). Therefore, we can conclude that the fear parameters control the
chaotic dynamics in a food chain model.
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