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1. Introduction

Fractional calculus is a branch of mathematical analysis, which studies the generalization of
integrals and derivatives of integer order to arbitrary order, that can be real or complex. In recent
years, many scientists and researchers have been interested in the topic of fractional calculus because
of its several applications in many fields, such as physics, chemistry, engineering, and so on. See for
example [9–11, 19, 23–25].

Theory and applications of nonlinear fractional partial differential equations (NFPDEs) play an
important role in the various fields of engineering and science, including fluid flow, diffusion,
viscoelasticity, quantum mechanics, electromagnetic, electrochemistry, biological population models
and other applications. The exact solutions of NFPDEs are sometimes too complicated to be attained
by conventional techniques due to the computational complexities of nonlinear parts involving them.
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Therefore, to search of solutions for NFPDEs there are variety of numerical and analytical methods
found in literature, among them: Adomian decomposition method (ADM) [22] variational iteration
method (VIM) [6], new iterative method (NIM) [12], reduced differential transform method
(RDTM) [2], homotopy analysis method (HAM) [3], homotopy perturbation method (HPM) [8]. The
residual power series method (RPSM), that was first proposed by Omar Abu Arqub [1], is
implemented to obtaine analytic approximate solutions of fractional partial differential equations and
convergence of RPSM for these equations is considered [5, 7, 17, 21].

The main aim of this paper is to apply the fractional residual power series method (FRPSM) to
find approximate analytical solutions of nonlinear time-fractional wave-like equations with variable
coefficients in the form

D2α
t u =

N∑
i, j=1

F1i j(X, t, u)
∂k+m

∂xk
i ∂xm

j

F2i j(uxi , ux j) (1.1)

+

N∑
i=1

G1i(X, t, u)
∂p

∂xp
i

G2i(uxi) + H(X, t, u) + S (X, t),

with the initial conditions
u(X, 0) = f0(X),Dα

t u(X, 0) = f1(X), (1.2)

where D2α
t = Dα

t Dα
t is the Caputo time-fractional derivative operator of order 2α, 1

2 < α ≤ 1, u ={
u(X, t), X = (x1, x2, ..., xN) ∈ RN , t ≥ 0,N ∈ N∗

}
, F1i j,G1i i, j ∈ {1, 2, ...,N} are nonlinear functions of

X, t and u, F2i j,G2i i, j ∈ {1, 2, ...,N} are nonlinear functions of derivatives of u with respect to xi and
x j i, j ∈ {1, 2, ...,N} , respectively. Also H, S are nonlinear functions and k,m, p are integers. When
α = 1, the equation (1.1) reduces to the classical wave-like equations with variable coefficients.

Recently, we have used many numerical techniques to solve this kind of equations, where the Caputo
time-fractional derivative operator is Dα

t , 1 < α ≤ 2. Note that, the solution of Eqs. (1.1)-(1.2) obtained
by the FRPSM is quite different from the solutions found in [12–15].

The rest of the paper is structured as follows: In Section 2, we present basic definitions and
properties of fractional calculus theory and fractional power series. In Section 3, we introduce our
results of fractional residual power series method (FRPSM) for the nonlinear time-fractional
wave-like equations (1.1) with the initial conditions (1.2). In Section 4, we propose three numerical
examples in order to show the validity and effectiveness of this approach. In Section 5, we discuss our
obtained results represented by figures and table. Finally, conclusions are drawn in the last section.

2. Basic definitions of fractional calculus theory

In this section, we give the necessary notations and basic definitions and properties of fractional
calculus theory, which are used further in this paper. For more details, see [16, 18, 20].

Definition 2.1. A real function u(X, t), X ∈ RN ,N ∈ N∗, t ∈ R+, is considered to be in the space
Cµ(RN × R+), µ ∈ R, if there exists a real number p > µ, so that u(X, t) = tpv(X, t), where v
∈ C

(
RN × R+

)
, and it is said to be in the space Cn

µ if u(n) ∈ Cµ(RN × R+), n ∈ N.
Definition 2.2. The Riemann-Liouville fractional integral operator of order α > 0 of u ∈ Cµ(RN ×

R+), µ ≥ −1, is defined as follows
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Iαt u(X, t) =


1

Γ(α)

t∫
t0

(t − ξ)α−1 u(X, ξ)dξ, α > 0, t > ξ > t0 ≥ 0,

u(X, t), α = 0.
(2.1)

Definition 2.3. The Caputo time-fractional derivative operator of order α > 0 of u ∈ Cn
−1(RN ×

R+), n ∈ N, is defined as follows

Dα
t u(X, t) =


1

Γ(n − α)

t∫
t0

(t − ξ)n−α−1 u(n)(X, ξ)dξ, n − 1 < α < n,

u(n)(X, t), α = n.
(2.2)

The following are the basic properties of the Caputo time-fractional derivative operator which we
will need here.

Let n − 1 < α ≤ n and β ≥ −1. Then

(1)
Dα

t (c) = 0, where c is a constant.

(2)

Dα
t (t − t0)β =

{ Γ(β+1)
Γ(β−α+1) (t − t0)β−α if β > n − 1,

0, if β ≤ n − 1.

For the Riemann-Liouville fractional integral and Caputo time-fractional derivative, we have the
following relation

Iαt Dα
t u(X, t) = u(X, t) −

n−1∑
k=0

u(k)(X, t+
0 )

(t − t0)k

k!
, X ∈ RN , t > t0 ≥ 0. (2.3)

Now, we introduce some definitions and theorems related to the fractional power series (FPS) which
are used in this paper. For more details, see [4].

Definition 2.4. A power series of the form
∞∑

n=0

cn(X)(t − t0)nα = c0(X) + c1(X)(t − t0)α + c2(X)(t − t0)2α + ... (2.4)

where m − 1 < α ≤ m and t ≥ t0 is called the multiple fractional power series (MFPS) about t0, where
t is a variable and cn(X) are constants called the coefficients of the series.

Theorem 2.1. Suppose that u(X, t) has a MFPS representation at t = t0 of the form

u(X, t) =

∞∑
n=0

cn(X)(t − t0)nα, (2.5)

0 ≤ m − 1 < α ≤ m, X ∈ RN , t0 ≤ t ≤ t0 + R,

and R is the radius of convergence of the MFPS.
If u ∈ C

(
RN× [t0, t0 + R)

)
and Dnα

t u ∈ C
(
RN× (t0, t0 + R)

)
for n = 0, 1, 2, ..., then the coefficients

Cn(X) will take the form of

cn(X) =
Dnα

t u(X, t0)
Γ(nα + 1)

, (2.6)

where Dnα
t = Dα

t .D
α
t .....D

α
t (n-times).
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3. FRPSM for time-fractional wave-like equations

Theorem 3.1. Consider the nonlinear time-fractional wave-like equations (1.1) with the initial
conditions (1.2). Then, the solution of Eqs. (1.1)-(1.2) is given in the form of infinite series which
converges rapidly to the exact solution as follows

u(X, t) =

∞∑
n=0

fn(X)
tnα

Γ(nα + 1)
,

1
2
< α < 1, 0 ≤ t < R, X ∈ RN ,N ∈ N∗,

where fn(X) are the coefficients of the series have been constructed by FRPSM and R is the radius of
convergence.

Proof. We consider the following nonlinear time-fractional wave-like equations (1.1) with the initial
conditions (1.2).

First we define

N(u, uxi , ux j) =

N∑
i, j=1

F1i j(X, t, u)
∂k+m

∂xk
i ∂xm

j

F2i j(uxi , ux j),

M(u, uxi) =

N∑
i=1

G1i(X, t, u)
∂p

∂xp
i

G2i(uxi),

K(u) = H(X, t, u).

Eq. (1.1) is written in the form

D2α
t u = N(u, uxi , ux j) + M(u, uxi) + K(u) + S (X, t). (3.1)

The FRPSM assumes the solution for Eq. (3.1) as a multiple fractional power series about the initial
point t = 0, as follows

u(X, t) =

∞∑
n=0

fn(X)
tnα

Γ(nα + 1)
, (3.2)

where R is the radius of convergence of the MFPS.
In the next step, the kth truncated series of u(X, t) that is uk(X, t) can be written as

uk(X, t) =

k∑
n=0

fn(X)
tnα

Γ(nα + 1)
, k = 0, 1, 2, ... (3.3)

Since the initial conditions in Eq. (1.2). Then, the approximate solution to (3.1) can be written in
the form of

u(X, t) = f0(X) + f1(X)
tα

Γ(α + 1)
+

∞∑
n=2

fn(X)
tnα

Γ(nα + 1)
,
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where f0(X) + f1(X) tα
Γ(α+1) is considered to be the 1st FRPS approximate solution of u(X, t).

Then uk(X, t) could be reformulated as

uk(X, t) = f0(X) + f1(X)
tα

Γ(α + 1)
+

k∑
n=2

fn(X)
tnα

Γ(nα + 1)
, k = 2, 3, 4, ... (3.4)

Now, we define the residual function as

Res(X, t) = D2α
t u − N(u, uxi , ux j) − M(u, uxi) − K(u) − S (X, t), (3.5)

and the kth truncated residual function as

Resk(X, t) = D2α
t uk − N(uk, ukxi , ukx j) − M(uk, ukxi) − K(uk) − S (X, t), k = 2, 3, 4, ... (3.6)

It is clear that Res(X, t) = 0 and lim
k−→∞

Resk(X, t) =Res(X, t) for each X ∈ RN and t ≥ 0. In fact this

lead to D(n−2)α
t Res(X, t) = 0 for n = 2, 3, 4, ..., k because the fractional derivative of a constant is zero

in the Caputo sense. Also, the fractional derivative D(n−2)α
t of Res(X, t) and Resk(X, t) are matching at

t = 0 for each n = 2, 3, 4, ..., k, that is,

D(n−2)α
t Res(X, 0) = D(n−2)α

t Resk(X, 0) = 0, n = 2, 3, 4, ..., k. (3.7)

To clarify the FRPS technique, we substitute the kth truncated series of u(X, t) into Eq. (3.6), find
the fractional derivative formula D(n−2)α

t of Resk(X, t) and then, we solve the obtained algebraic (3.7),
to get the required coefficients fn(X), n = 2, 3, 4, ...in Eq. (3.4). Thus the uk(X, t) approximate solutions
can be obtained respectively.

4. Numerical examples

In this section, we describe the method explained in the Section 3. Three numerical examples of
nonlinear time-fractional wave-like equations with variable coefficients are considered to validate the
capability, reliability and efficiency of FRPSM.

Example 4.1. Consider the 2-dimensional nonlinear time-fractional wave-like equation with
variable coefficients

D2α
t u =

∂2

∂x∂y
(uxxuyy) −

∂2

∂x∂y
(xyuxuy) − u,

1
2
< α ≤ 1, (4.1)

with the initial conditions
u(x, y, 0) = exy,Dα

t u(x, y, 0) = exy, (4.2)

where D2α
t is the Caputo fractional derivative operator of order 2α, u is a function of x, y, t ∈ R×R × R+.

For α = 1, the exact solution of Eqs. (4.1)-(4.2) is given by [14]

u(x, y, t) = (cos(t) + sin(t))exy.

According to FRPSM described in Section 3, by applying on the Eqs. (4.1)-(4.2), we have
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First, the 1st FRPS approximate solution of u(x, y, t) is

u2(x, y, t) = exy + exy tα

Γ(α + 1)
. (4.3)

Secondly, construct the kth truncated series and kth residual function of Eqs. (4.1)-(4.2) as follow

uk(x, y, t) = exy + exy tα

Γ(α + 1)
+

k∑
n=2

fn(x, y)
tnα

Γ(nα + 1)
, (4.4)

Resk(x, y, t) = D2α
t uk −

∂2

∂x∂y
(ukxxukyy) +

∂2

∂x∂y
(xyukxuky) + uk. (4.5)

By (3.7), we have
D(k−2)α

t Resk(x, y, 0) = 0, k = 2, 3, 4, ... (4.6)

Taking k = 2 in (4.6), we obtain
f2(x, y) = −exy.

Then, the 2nd truncated approximate solution will be

u2(x, y, t) = exy + exy tα

Γ(α + 1)
− exy t2α

Γ(2α + 1)
.

In a similar way, taking k = 3, 4, 5 in (4.6), we have

f3(x, y) = −exy,

f4(x, y) = exy,

f5(x, y) = exy.

Then the 5th order truncated approximate solution of Eqs. (4.1)-(4.2) can be obtained as follows

u5(x, y, t) = exy + exy tα

Γ(α + 1)
− exy t2α

Γ(2α + 1)
− exy t3α

Γ(3α + 1)

+exy t4α

Γ(4α + 1)
+ exy t5α

Γ(5α + 1)
.

Following the same step, then the solution of Eqs. (4.1)-(4.2) can be expressed by

u(x, y, t) =

(
1 −

t2α

Γ(2α + 1)
+

t4α

Γ(4α + 1)
− ...

)
exy

+

(
tα

Γ(α + 1)
−

t3α

Γ(3α + 1)
+

t5α

Γ(5α + 1)
− ...

)
exy (4.7)

= (cos(tα, α) + sin(tα, α)) exy.

When α = 1, the exact solution is

u(x, y, t) = (cos(t) + sin(t))exy.
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Remark 4.1. Comparing our obtained result (4.7) with the results in [12–15], it can be seen that the
result is new.
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Figure 1. 3D plots for the 5th FRPSM approximate solution and exact solution for different
values of α for Example 4.1 when y = 0.5.
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Figure 2. 2D plots for the 5th FRPSM approximate solution and exact solution for different
values of α for Example 4.1 when x = y = 0.5.

Table 1. Numerical values of the 5th FRPS approximate solution and exact solution for
different values of α for Example 4.1 when x = y = 0.5.

t α = 0.7 α = 0.8 α = 0.9 α = 1 Absolute error
uFRPS M uFRPS M uFRPS M uFRPS M uexact |uexact − uFRPS M |

0.1 1.5207 1.4784 1.4394 1.4058 1.4058 1.8085 × 10−9

0.3 1.6652 1.6594 1.6375 1.6061 1.6061 1.3536 × 10−6

0.5 1.6750 1.7193 1.7411 1.7425 1.7424 2.9725 × 10−5

0.7 1.6137 1.6956 1.7634 1.8095 1.8093 6.7065 × 10−2

0.9 1.5164 1.6112 1.714 1.805 1.8040 1.0547 × 10−3
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Example 4.2. Consider the following nonlinear time-fractional wave-like equation with variable
coefficients

D2α
t u = u2 ∂

2

∂x2 (uxuxxuxxx) + u2
x
∂2

∂x2 (u3
xx) − 18u5 + u,

1
2
< α ≤ 1, (4.8)

with the initial conditions
u(x, 0) = ex,Dα

t u(x, 0) = ex, (4.9)

where D2α
t is the Caputo fractional derivative operator of order 2α, and u is a function of x, t ∈ ]0, 1[×R+.

For α = 1, the exact solution of Eqs. (4.8)-(4.9) is given by [14]

u(x, t) = exp(t + x).

According to FRPSM described in Section 3, by applying on the Eqs. (4.8)-(4.9), we have
First, the 1st FRPS approximate solution of u(x, t) is

u2(x, t) = ex + ex tα

Γ(α + 1)
. (4.10)

Secondly, construct the kth truncated series and kth residual function of Eqs. (4.8)-(4.9) as follow

uk(x, t) = ex + ex tα

Γ(α + 1)
+

k∑
n=2

fn(x)
tnα

Γ(nα + 1)
, (4.11)

Resk(x, t) = D2α
t uk − (uk)2 ∂2

∂x2 (ukxukxxukxxx) − (ukx)2 ∂2

∂x2 (ukxx)3 + 18 (uk)5
− uk. (4.12)

By (3.7), we have
D(k−2)α

t Resk(x, 0) = 0, k = 2, 3, 4, ... (4.13)

Taking k = 2 in (4.13), we obtain
f2(x) = ex.

Then the 2nd truncated approximate solution will be

u2(x, t) = ex + ex tα

Γ(α + 1)
+ ex t2α

Γ(2α + 1)
.

In a similar way, taking k = 3, 4, 5 in (4.13), we have

f3(x) = ex,

f4(x) = ex,

f5(x) = ex.

Then the 5th order truncated approximate solution of Eqs. (4.8)-(4.9) can be obtained as follows:

u5(x, t) = ex + ex tα

Γ(α + 1)
+ ex t2α

Γ(2α + 1)
+ ex t3α

Γ(3α + 1)

+ex t4α

Γ(4α + 1)
+ ex t5α

Γ(5α + 1)
.
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Following the same step, then the solution of Eqs. (4.8)-(4.9) can be expressed by

u(x, t) =

(
1 +

tα

Γ(α + 1)
+

t2α

Γ(2α + 1)
+

t3α

Γ(3α + 1)

+
t4α

Γ(4α + 1)
+

t5α

Γ(5α + 1)
+ ...

)
ex (4.14)

= exp ((tα, α) + x) .

When α = 1, the exact solution is

u(x, t) = exp (t + x) .

Remark 4.2. Comparing our obtained result (4.14) with the results in [12–15], it can be seen that
the result is new.
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Figure 3. 3D plots for the 5th FRPSM approximate solution and exact solution for different
values of α for Example 4.2.
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Figure 4. 2D plots for the 5th FRPSM approximate solution and exact solution for different
values of α for Example 4.2 when x = 0.5.
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Table 2. Numerical values of the 5th FRPS approximate solution and exact solution for
different values of α for Example 4.2 when x = 0.5.

t α = 0.7 α = 0.8 α = 0.9 α = 1 Absolute error
uFRPS M uFRPS M uFRPS M uFRPS M uexact |uexact − uFRPS M |

0.1 2.0702 1.9606 1.8809 1.8221 1.8221 2.323 × 10−9

0.3 2.7499 2.5282 2.3585 2.2255 2.2255 1.7436 × 10−6

0.5 3.5066 3.1781 2.9222 2.7182 2.7183 3.8504 × 10−5

0.7 4.3927 3.9506 3.6011 3.3198 3.3201 2.9890 × 10−4

0.9 5.4403 4.8764 4.4228 4.0538 4.0552 1.3929 × 10−3

Example 4.3 Consider the following one dimensional nonlinear time-fractional wave-like equation
with variable coefficients

D2α
t u = x2 ∂

∂x
(uxuxx) − x2(uxx)2 − u, 1 < α ≤ 2, (4.15)

with the initial conditions
u(x, 0) = 0,Dα

t u(x, 0) = x2, (4.16)

where D2α
t is the Caputo fractional derivative operator oforder 2α, and u is a function of x, t ∈ ]0, 1[×R+.

For α = 1, the exact solution of Eqs. (4.15)-(4.16) is given by [14]

u(x, t) = x2 sin(t).

According to FRPSM described in Section 3, by applying on the Eqs. (4.15)-(4.16), we have
First, the 1st FRPS approximate solution of u(x, t) is

u2(x, t) = x2 tα

Γ(α + 1)
. (4.17)

Secondly, construct the kth truncated series and kth residual function of Eqs. (4.15)-(4.16) as follow

uk(x, t) = x2 tα

Γ(α + 1)
+

k∑
n=2

fn(x)
tnα

Γ(nα + 1)
, (4.18)

Resk(x, t) = D2α
t uk − x2 ∂

∂x
(ukxukxx) − x2(ukxx)2 − uk. (4.19)

By (3.7), we have
D(k−2)α

t Resk(x, t) = 0, k = 2, 3, 4, ... (4.20)

Taking k = 2 in (4.18), we obtain
f2(x) = 0.

Then the 2nd truncated approximate solution will be

u2(x, t) = x2 tα

Γ(α + 1)
.
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In a similar way, taking k = 3, 4, 5 in (4.20), we have

f3(x) = −x2,

f4(x) = 0,
f5(x) = x2.

Then the 5th order truncated approximate solution of Eqs. (4.15)-(4.16) can be obtained as follows:

u5(x, t) = x2 tα

Γ(α + 1)
− x2 t3α

Γ(3α + 1)
+ x2 t5α

Γ(5α + 1)
.

Following the same step, then the solution of Eqs. (4.15)-(4.16) can be expressed by

u(x, t) = x2
(

tα

Γ(α + 1)
−

t3α

Γ(3α + 1)
+

t5α

Γ(5α + 1)
− ...

)
(4.21)

= x2 sin(tα, α).

When α = 1, the exact solution is

u(x, t) = x2 sin(t).

Remark 4.3. Comparing our obtained result (4.21) with the results in [12–15], it can be seen that
the result is new.
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Figure 5. 3D plots for the 5th FRPSM approximate solution and exact solution for different
values of α for Example 4.3.
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Figure 6. 2D plots for the 5th FRPSM approximate solution and exact solution for different
values of α for Example 4.3 when x = 0.5.

Table 3. Numerical values of the 5th FRPS approximate solution and exact solution for
different values of α for Example 4.3 when x = 0.5.

t α = 0.7 α = 0.8 α = 0.9 α = 1 Absolute error
uFRPS M uFRPS M uFRPS M uFRPS M uexact |uexact − uFRPS M |

0.1 0.054 0.042209 0.032605 0.024958 0.024958 4.9596 × 10−12

0.3 0.10969 0.097871 0.085658 0.07388 0.07388 1.0835 × 10−8

0.5 0.14473 0.13893 0.13028 0.11986 0.11986 3.8618 × 10−7

0.7 0.16673 0.16866 0.16664 0.16106 0.16105 4.0574 × 10−6

0.9 0.17926 0.18843 0.19429 0.19586 0.19583 2.346 × 10−5

5. Numerical results and discussion

In this section, we discuss and evaluate the numerical results of the approximate solutions for
Examples 4.1, 4.2 and 4.3 respectively. Figures 1, 3 and 5 represents the surface graph of the 5th

FRPSM approximate solution at α = 0.6, 0.8, 1 and the exact solution. Figures 2, 4 and 6 represents
the behavior of the 5th FRPSM approximate solution at α = 0.7, 0.8, 0.95, 1 and the exact solution.
These figures afirm that when the order of the fractional derivative α approaches 1, the approximate
solutions obtained by FRPSM approach the exact solutions.

Tables 1–3 represents the numerical values of the 5th FRPSM approximate solution for different
values of α and the exact solution. These tables clarifies the convergence of the approximate solutions
to the exact solutions.

6. Conclusion

In this paper, fractional residual power series method (FRPSM) is successfully applied to find
approximate analytical solutions of time-fractional wave-like equations with variables coefficients.
This method was tested on three numerical examples. Numerical results obtained confirm the easily,
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accurately and efficiency of the proposed method. The advantage of the FRPSM is that it reduces
significantly the numerical computations to find approximate analytical solutions for this type of
equations compared to current methods such as the perturbation technique, differential transform
method (DTM) and Adomian decomposition method (ADM), thus, we can conclude that, the FRPSM
is simple, effective, and practically method for solving many other nonlinear fractional partial
differential equations.
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