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Abstract: This paper deals with the two-species chemotaxis system
ut = ∆u − ∇ · (uχ1(w)∇w) + µ1u(1 − u) in Ω × (0,∞),
vt = ∆v − ∇ · (vχ2(w)∇w) + µ2v(1 − v) in Ω × (0,∞),
wt = d∆w + h(u, v,w) in Ω × (0,∞),

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ∈ N; h, χi are functions satisfying
some conditions. Global existence and asymptotic stability of solutions to the above system were
established under some conditions [11]. The main purpose of the present paper is to improve smallness
conditions for chemotactic effect deriving asymptotic stability and to give the convergence rate in
stabilization which cannot be attained in the previous work.
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1. Introduction and the main result

Nowadays, mathematics is useful in many things, for example, physics, chemistry, biology, com-
puter, medical, architecture, and so on (see e.g., [3,7,14]). Here we focus on biology. One of the
important models in biology is the logistic equation ut = u(1 − u). Some of biological models have the
logistic term, e.g., the Fisher–KPP equation

ut = ∆u + u(1 − u).

On the other hand, many mathematicians study a chemotaxis system lately, which describes a part of
the life cycle of cellular slime molds with chemotaxis. After the pioneering work of Keller–Segel [8], a

\protect \relax \protect \edef txr{txr}\protect \xdef \U/txexa/m/n/5 {\OT1/txr/m/n/10 }\U/txexa/m/n/5 \size@update \enc@update http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/Math.2016.3.156


157

number of variations of the chemotaxis system are proposed and investigated (see e.g., [2,4,5]). Also,
multi-species chemotaxis systems have been studied by e.g., [6,15]. In this paper we focus on a two-
species chemotaxis system with logistic term which describes a situation in which multi populations
react on a single chemoattractant.

We consider the two-species chemotaxis system

ut = ∆u − ∇ · (uχ1(w)∇w) + µ1u(1 − u), x ∈ Ω, t > 0,

vt = ∆v − ∇ · (vχ2(w)∇w) + µ2v(1 − v), x ∈ Ω, t > 0,

wt = d∆w + h(u, v,w), x ∈ Ω, t > 0,
∂u
∂n
=
∂v
∂n
=
∂w
∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in RN (N ∈ N) with smooth boundary ∂Ω and n denotes the unit
outer normal vector of ∂Ω. The initial data u0, v0 and w0 are assumed to be nonnegative functions.
The unknown functions u(x, t) and v(x, t) represent the population densities of two species and w(x, t)
shows the concentration of the substance at place x and time t.

In mathematical view, global existence and behavior of solutions are fundamental theme. Recently,
Negreanu–Tello [12,13] built a technical way to prove global existence and asymptotic behavior of
solutions to (1.1). In [13] they dealt with (1.1) when d = 0, µi > 0 under the condition

∃w ≥ w0; h(u, v,w) ≤ 0,

where u, v satisfy some representations determined by w. In [12] they studied (1.1) when 0 < d < 1,
µi = 0 under similar conditions as in [13] and

χ′i +
1

1 − d
χ2

i ≤ 0 (i = 1, 2). (1.2)

They supposed in [12,13] that the functions h, χi for i = 1, 2 generalize of the prototypical case
χi(w) = Ki

(1+w)σi (Ki > 0, σi ≥ 1), h(u, v,w) = u+v−w. These days, the restriction of 0 ≤ d < 1 for global
existence is completely removed and asymptotic stability of solutions to (1.1) is established for the first
time under a smallness condition for the function χi generalizing of χi(w) = Ki

(1+w)σi (Ki > 0, σi > 1)
([11]).

The purpose of this paper is to improve a way in [11] for obtaining asymptotic stability of solutions
to (1.1) under a more general and sharp smallness condition for the sensitivity function χi(w). We shall
suppose throughout this paper that h, χi (i = 1, 2) satisfy the following conditions:

χi ∈ C1+ω([0,∞)) ∩ L1(0,∞) (0 < ∃ω < 1), χi > 0 (i = 1, 2), (1.3)
h ∈ C1([0,∞) × [0,∞) × [0,∞)), h(0, 0, 0) ≥ 0, (1.4)

∃ γ > 0;
∂h
∂u

(u, v,w) ≥ 0,
∂h
∂v

(u, v,w) ≥ 0,
∂h
∂w

(u, v,w) ≤ −γ, (1.5)

∃ δ > 0, ∃M > 0; |h(u, v,w) + δw| ≤ M(u + v + 1), (1.6)
∃ ki > 0; −χi(w)h(0, 0,w) ≤ ki (i = 1, 2). (1.7)
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We also assume that

∃ p > N; 2dχ′i(w) +
(
(d − 1)p +

√
(d − 1)2 p2 + 4dp

)
[χi(w)]2 ≤ 0 (i = 1, 2). (1.8)

The above conditions cover the prototypical example χi(w) = Ki
(1+w)σi (Ki > 0, σi > 1), h(u, v,w) =

u + v − w. We assume that the initial data u0, v0, w0 satisfy

0 ≤ u0 ∈ C(Ω) \ {0}, 0 ≤ v0 ∈ C(Ω) \ {0}, 0 ≤ w0 ∈ W1,q(Ω) (∃ q > N). (1.9)

The following result which is concerned with global existence and boundedness in (1.1) was estab-
lished in [11].

Theorem 1.1 ([11, Theorem 1.1]). Let d ≥ 0, µi > 0 (i = 1, 2). Assume that h, χi satisfy (1.3)–(1.8).
Then for any u0, v0, w0 satisfying (1.9) for some q > N, there exists an exactly one pair (u, v,w) of
nonnegative functions

u, v, w ∈ C(Ω × [0,∞)) ∩C2,1(Ω × (0,∞)) when d > 0,

u, v, w ∈ C([0,∞); W1,q(Ω)) ∩C1((0,∞); W1,q(Ω)) when d = 0,

which satisfy (1.1). Moreover, the solution (u, v,w) is uniformly bounded, i.e., there exists a constant
C1 > 0 such that

∥u(t)∥L∞(Ω) + ∥v(t)∥L∞(Ω) + ∥w(t)∥L∞(Ω) ≤ C1 for all t ≥ 0.

Since Theorem 1.1 guarantees that u, v and w exist globally and are bounded and nonnegative, it is
possible to define nonnegative numbers α, β by

α := max
(u,v,w)∈I

hu(u, v,w), β := max
(u,v,w)∈I

hv(u, v,w), (1.10)

where I = (0,C1)3 and C1 is defined in Theorem 1.1.
Now the main result reads as follows. The main theorem is concerned with asymptotic stability in

(1.1).

Theorem 1.2. Let d > 0, µi > 0 (i = 1, 2). Under the conditions (1.3)–(1.9) and

α > 0, β > 0, χ1(0)2 <
16µ1dγ

α2 + β2 + 2αβ
, χ2(0)2 <

16µ2dγ
α2 + β2 + 2αβ

, (1.11)

the unique global solution (u, v,w) of (1.1) satisfies that there exist C > 0 and λ > 0 such that

∥u(t) − 1∥L∞(Ω) + ∥v(t) − 1∥L∞(Ω) + ∥w(t) − w̃∥L∞(Ω) ≤ Ce−λt (t > 0),

where w̃ ≥ 0 such that h(1, 1, w̃) = 0.

Remark 1.1. This result improves the previous result [11, Theorem 1.2]. Indeed, the condition (1.11)
is sharper than “χi(0) are suitably small” assumed in [11]. Moreover, this result attains to show the
convergence rate which cannot be given in [11].
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Remark 1.2. From (1.4)–(1.6) there exists w̃ ≥ 0 such that h(1, 1, w̃) = 0. Indeed, if we choose
w ≥ 3M/δ, then (1.6) yields that h(1, 1,w) ≤ 3M − δw ≤ 0. On the other hand, (1.4) and (1.5) imply
that h(1, 1, 0) ≥ h(0, 0, 0) ≥ 0. Hence, by the intermediate value theorem there exists w̃ ≥ 0 such that
h(1, 1, w̃) = 0.

The strategy for the proof of Theorem 1.2 is to modify an argument in [10]. The key for this strategy
is to construct the following energy estimate which was not given in [11]:

d
dt

E(t) ≤ −ε
(∫
Ω

(u − 1)2 +

∫
Ω

(v − 1)2 +

∫
Ω

(w − w̃)2
)

with some function E(t) ≥ 0 and some ε > 0. This strategy enables us to improve the conditions
assumed in [11].

2. Proof of the main result

In this section we will establish asymptotic stability of solutions to (1.1). For the proof of Theorem
1.2, we shall prepare some elementary results.

Lemma 2.1 ([1, Lemma 3.1]). Suppose that f : (1,∞) → R is a uniformly continuous nonnegative
function satisfying

∫ ∞
1

f (t) dt < ∞. Then f (t)→ 0 as t → ∞.

Lemma 2.2. Let a1, a2, a3, a4, a5 ∈ R. Suppose that

a1 > 0, a3 > 0, a5 −
a2

2

4a1
−

a2
4

4a3
> 0. (2.1)

Then

a1x2 + a2xz + a3y2 + a4yz + a5z2 ≥ 0 (2.2)

holds for all x, y, z ∈ R.

Proof. From straightforward calculations we obtain

a1x2 + a2xz + a3y2 + a4yz + a5z2 = a1

(
x +

a2z
2a1

)2

+ a3

(
y +

a4z
2a3

)2

+

(
a5 −

a2
2

4a1
−

a2
4

4a3

)
z2.

In view of the above equation, (2.1) leads to (2.2). �

Now we will prove the key estimate for the proof of Theorem 1.2.

Lemma 2.3. Let (u, v,w) be a solution to (1.1). Under the conditions (1.3)–(1.9) and (1.11), there exist
δ1, δ2 > 0 and ε > 0 such that the nonnegative functions E1 and F1 defined by

E1(t) :=
∫
Ω

(
u − 1 − log u

)
+ δ1
µ1

µ2

∫
Ω

(
v − 1 − log v

)
+
δ2

2

∫
Ω

(w − w̃)2

and

F1(t) :=
∫
Ω

(u − 1)2 +

∫
Ω

(v − 1)2 +

∫
Ω

(w − w̃)2
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satisfy

d
dt

E1(t) ≤ −εF1(t) (t > 0). (2.3)

Proof. Thanks to (1.11), we can choose δ1 =
β

α
> 0 and δ2 > 0 satisfying

max
{
χ1(0)2(1 + δ1)

4d
,
µ1χ2(0)2(1 + δ1)

4µ2d

}
< δ2 <

4µ1γδ1

α2δ1 + β2 . (2.4)

We denote by A1(t), B1(t), C1(t) the functions defined as

A1(t) :=
∫
Ω

(
u − 1 − log u

)
, B1(t) =

∫
Ω

(
v − 1 − log v

)
, C1(t) :=

1
2

∫
Ω

(w − w̃)2 ,

and we write as

E1(t) = A1(t) + δ1
µ1

µ2
B1(t) + δ2C1(t).

The Taylor formula applied to H(s) = s− log s (s ≥ 0) yields A1(t) =
∫
Ω

(H(u)−H(1)) is a nonnegative
function for t > 0 (more detail, see [1, Lemma 3.2]). Similarly, we have that B1(t) is a positive function.
By straightforward calculations we infer

d
dt

A1(t) = −µ1

∫
Ω

(u − 1)2 −
∫
Ω

|∇u|2
u2 +

∫
Ω

χ1(w)
u
∇u · ∇w,

d
dt

B1(t) = −µ2

∫
Ω

(v − 1)2 −
∫
Ω

|∇v|2
v2 +

∫
Ω

χ2(w)
v
∇v · ∇w,

d
dt

C1(t) =
∫
Ω

hu(u − 1)(w − w̃) +
∫
Ω

hv(v − 1)(w − w̃) +
∫
Ω

hw(w − w̃)2 − d
∫
Ω

|∇w|2

with some derivatives hu, hv and hw. Hence we have

d
dt

E1(t) = I1(t) + I2(t), (2.5)

where

I1(t) := −µ1

∫
Ω

(u − 1)2 − δ1µ1

∫
Ω

(v − 1)2 + δ2

∫
Ω

hu(u − 1)(w − w̃)

+ δ2

∫
Ω

hv(v − 1)(w − w̃) + δ2

∫
Ω

hw(w − w̃)2

and

I2(t) := −
∫
Ω

|∇u|2
u2 +

∫
Ω

χ1(w)
u
∇u · ∇w − δ1

µ1

µ2

∫
Ω

|∇v|2
v2 (2.6)

+ δ1
µ1

µ2

∫
Ω

χ2(w)
v
∇v · ∇w − dδ2

∫
Ω

|∇w|2.
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At first, we shall show from Lemma 2.2 that there exists ε1 > 0 such that

I1(t) ≤ −ε1

(∫
Ω

(u − 1)2 +

∫
Ω

(v − 1)2 +

∫
Ω

(w − w̃)2
)
. (2.7)

To see this, we put

g1(ε) := µ1 − ε, g2(ε) := δ1µ1 − ε,

g3(ε) := (−δ2hw − ε) −
h2

u

4(µ1 − ε)
δ2

2 −
h2

v

4(δ1µ1 − ε)
δ2

2.

Since µ1 > 0 and δ1 =
β

α
> 0, we have g1(0) = µ1 > 0 and g2(0) = δ1µ1 > 0. In light of (1.5) and the

definitions of δ2, α, β > 0 (see (1.10) and (2.4)) we obtain

g3(0) = δ2

(
−hw −

(
h2

u

4µ1
+

h2
v

4δ1µ1

)
δ2

)
≥ δ2

(
γ −

(
α2δ1 + β

4δ1µ1

)
δ2

)
> 0.

Combination of the above inequalities and the continuity of gi for i = 1, 2, 3 yield that there exists
ε1 > 0 such that gi(ε1) > 0 hold for i = 1, 2, 3. Thanks to Lemma 2.2 with

a1 = µ1 − ε1, a2 = −δ2hu, a3 = δ1µ1 − ε1,

a4 = −δ2hv, a5 = −δ2hw − ε1,

x = u(t) − 1, y = v(t) − 1, z = w(t) − w̃,

we obtain (2.7) with ε1 > 0. Lastly we will prove

I2(t) ≤ 0. (2.8)

Noting that χ′i < 0 (from (1.8)) and then using the Young inequality, we have∫
Ω

χ1(w)
u
∇u · ∇w ≤ χ1(0)

∫
Ω

|∇u · ∇w|
u

≤ χ1(0)2(1 + δ1)
4dδ2

∫
Ω

|∇u|2
u2 +

dδ2

1 + δ1

∫
Ω

|∇w|2

and

δ1
µ1

µ2

∫
Ω

χ2(w)
v
∇v · ∇w ≤ χ2(0)δ1

µ1

µ2

∫
Ω

|∇v · ∇w|
v

≤ χ2(0)2δ1(1 + δ1)
4dδ2

(
µ1

µ2

)2 ∫
Ω

|∇v|2
v2 +

dδ1δ2

1 + δ1

∫
Ω

|∇w|2.

Plugging these into (2.6) we infer

I2(t) ≤ −
(
1 − χ1(0)2(1 + δ1)

4dδ2

) ∫
Ω

|∇u|2
u2 − δ1

µ1

µ2

(
1 − µ1χ2(0)2(1 + δ1)

4dµ2δ2

) ∫
Ω

|∇v|2
v2 .
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We note from the definition of δ2 > 0 that

1 − χ1(0)2(1 + δ1)
4dδ2

> 0, 1 − µ1χ2(0)2(1 + δ1)
4dµ2δ2

> 0.

Thus we have (2.8). Combination of (2.5), (2.7) and (2.8) implies the end of the proof. �

Lemma 2.4. Let (u, v,w) be a solution to (1.1). Under the conditions (1.3)–(1.9) and (1.11), (u, v,w)
has the following asymptotic behavior:

∥u(t) − 1∥L∞(Ω) → 0, ∥v(t) − 1∥L∞(Ω) → 0, ∥w(t) − w̃∥L∞(Ω) → 0 (t → ∞).

Proof. Firstly the boundedness of u, v, ∇w and a standard parabolic regularity theory ([9]) yield that
there exist θ ∈ (0, 1) and C > 0 such that

∥u∥
C2+θ,1+ θ2 (Ω×[1,t])

+ ∥v∥
C2+θ,1+ θ2 (Ω×[1,t])

+ ∥w∥
C2+θ,1+ θ2 (Ω×[1,t])

≤ C for all t ≥ 1.

Therefore in view of the Gagliardo–Nirenberg inequality

∥φ∥L∞(Ω) ≤ c∥φ∥
N

N+2

W1,∞(Ω)∥φ∥
2

N+2

L2(Ω) (φ ∈ W1,∞(Ω)), (2.9)

it is sufficient to show that

∥u(t) − 1∥L2(Ω) → 0, ∥v(t) − 1∥L2(Ω) → 0, ∥w(t) − w̃∥L2(Ω) → 0 (t → ∞).

We let

f1(t) :=
∫
Ω

(u − 1)2 +

∫
Ω

(v − 1)2 +

∫
Ω

(w − w̃)2.

We have that f1(t) is a nonnegative function, and thanks to the regularity of u, v,w we can see that f1(t)
is uniformly continuous. Moreover, integrating (2.3) over (1,∞), we infer from the positivity of E1(t)
that ∫ ∞

1
f1(t) dt ≤ 1

ε
E1(1) < ∞.

Therefore we conclude from Lemma 2.1 that f1(t)→ 0 (t → ∞), which means∫
Ω

(u − 1)2 +

∫
Ω

(v − 1)2 +

∫
Ω

(w − w̃)2 → 0 (t → ∞).

This implies the end of the proof. �

Lemma 2.5. Let (u, v,w) be a solution to (1.1). Under the conditions (1.3)–(1.9) and (1.11), there exist
C > 0 and λ > 0 such that

∥u(t) − 1∥L∞(Ω) + ∥v(t) − 1∥L∞(Ω) + ∥w(t) − w̃∥L∞(Ω) ≤ Ce−λt (t > 0).
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Proof. From the L’Hôpital theorem applied to H(s) := s − log s we can see

lim
s→1

H(s) − H(1)
(s − 1)2 = lim

s→1

H′′(s)
2
=

1
2
. (2.10)

In view of the combination of (2.10) and ∥u − 1∥L∞(Ω) → 0 from Lemma 2.4 we obtain that there exists
t0 > 0 such that

1
4

∫
Ω

(u − 1)2 ≤ A1(t) =
∫
Ω

(H(u) − H(1)) ≤
∫
Ω

(u − 1)2 (t > t0). (2.11)

A similar argument, for the function v, yields that there exists t1 > t0 such that

1
4

∫
Ω

(v − 1)2 ≤ B1(t) ≤
∫
Ω

(v − 1)2 (t > t1). (2.12)

We infer from (2.11) and the definitions of E1(t), F1(t) that

E1(t) ≤ c6F1(t)

for all t > t1 with some c6 > 0. Plugging this into (2.3), we have

d
dt

E1(t) ≤ −εF1(t) ≤ − ε
c6

E1(t) (t > t1),

which implies that there exist c7 > 0 and ℓ > 0 such that

E1(t) ≤ c7e−ℓt (t > t1).

Thus we obtain from (2.11) and (2.12) that∫
Ω

(u − 1)2 +

∫
Ω

(v − 1)2 +

∫
Ω

(w − w̃)2 ≤ c8E1(t) ≤ c7c8e−ℓt

for all t > t1 with some c8 > 0. From the Gagliardo–Nirenberg inequality (2.9) with the regularity of
u, v,w, we achieve that there exist C > 0 and λ > 0 such that

∥u(t) − 1∥L∞(Ω) + ∥v(t) − 1∥L∞(Ω) + ∥w(t) − w̃∥L∞(Ω) ≤ Ce−λt (t > 0).

This completes the proof of Lemma 2.5. �

Proof of Theorem 1.2. Theorem 1.2 follows directly from Lemma 2.5. �
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