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Abstract: Closed-form expressions are deduced and discussed, using an extended form of the 
classical dislocation layer method, for the phonon and phason stress and electric displacement 

components and intensity factors generated in one-dimensional piezoelectric quasicrystals by a 

collinear row of moving shear cracks. Representative numerical results are presented graphically. 

Additionally, this analysis yields the fields of a single crack moving in a finite piezoelectric 

quasicrystalline plate and also of a moving edge crack in a plate. 
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1. Introduction 

Since the announcement in 1984 by Shechtman et al. [1] of the exciting discovery of the new 

class of novel alloys that are now known as quasicrystals, there has been an enormous concerted 

effort by especially the exponents of materials science, solid mechanics and solid state physics to 

investigate their behaviour both theoretically and experimentally. They have desirable properties that 

are now widely exploited in, for example, engine surface coatings in the aerospace industry and 

nuclear fuel containers. 

However, with the increasing maturity of the technological applications of quasicrystals, it is 

crucial that their behaviour should continue to be fully researched and particularly that their intrinsic 

piezoelectric coupling effects are incorporated. Piezoelectric materials are utilized extensively in 
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signal processing in, for example, transducers, sensors and attenuators and piezoelectric quasicrystals 

can play a vital role in the design of intelligent systems and structures. It is vital that fundamental 

solutions of all types of boundary value problems and particularly those involving various 

configurations of inclusions and cracks are made available, as experiments have demonstrated that 

quasicrystals are quite brittle and thus can experience premature failure. 

Fan [2,3] and Ding et al. [4], for example, have most conveniently comprehensively referenced 

and reviewed the growing literature of mathematical theories and analyses of physical problems in 

quasicrystals. But encouragingly, more recently relevant techniques have begun to be developed for 

studying the corresponding situations within piezoelectric quasicrystals. 

The fundamental equations that govern the behaviour of three-dimensional piezoelectric 

quasicrystals were developed by Altay and Dökmeci [5] in both differential and variational invariant 

forms. Using the theory of group representation, Li and Liu [6] derived the matrix forms of the 

thermal-expansion coefficients and piezoelectric coefficient tensors for all 31 point-groups of one-

dimensional quasicrystals. These provided the starting point for Wang and Pan [7] to produce 

elementary expressions for the induced fields of a uniformly moving screw dislocation within a one-

dimensional hexagonal piezoelectric quasicrystal. Thereafter, the generalized formalism of Stroh was 

used by Yang et al. [8] to give the piezoelectric fields created in a one-dimensional piezoelectric 

quasicrystal by a motionless straight dislocation that is parallel to its axis of periodicity. 

By introducing two functions of displacement and rigorously applying the theory of operators, a 

set of general solutions of static problems in three-dimensions for hexagonal piezoelectric 

quasicrystals was obtained by Li et al. [9]. Yu et al. [10] proposed a method of complex variables for 

an elliptical anti-plane cavity to derive explicit solutions for the elastic-electric fields in a one-

dimensional hexagonal piezoelectric quasicrystal. Further, Yu et al. [11] used operator and complex 

variable function methods to rigorously deduce general solutions of piezoelasticity plane problems 

for quasicrystals and considered an antiplane, constantly-loaded, stationary crack in a hexagonal 

piezoelastic quasicrystal by the semi-inverse method. Zhang et al. [12] introduced four potential 

functions in terms of which solutions of the equations governing plane problems in one-dimensional 

orthorhombic quasicrystals having piezoelectric effects are expressed. 

Most recently, in 2016, methods of complex variable functions and techniques of conformal 

mappings assisted Yang and Li [13] in studying a circular hole with a straight crack and  

Guo et al. [14] in considering an elliptical inclusion embedded in composites of one-dimensional 

hexagonal piezoelectric quasicrystals. Fan et al. [15] presented basic solutions of three-dimensional 

cracks in such media using Green's functions, Hankel transforms and methods of boundary integral 

equations and Tupholme [16] derived closed-form expressions for the stress and electric fields 

created by a moving uniformly-loaded shear crack in one-dimensional hexagonal piezoelectric 

quasicrystals. 

The continuing wider interest in quasicrystals is further demonstrated by, for example, the 

proposal and analysis by Guo and Pan [17] of a three-phase model of one-dimensional hexagonal 

piezoelectric quasicrystal composites and a study of two-dimensional thermoelastic deformations of 

a conductive elliptical hole embedded within a two-dimensional decagonal quasicrystal by  

Guo et al. [18], and the references therein. 
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However, there has been no analysis whatsoever presented previously using any technique of a 

row of moving, anti-plane cracks in quasicrystals with piezoelectric effects. The focus of the current 

investigation is to demonstrate that the continuous dislocation layers method, that was devised 

originally for purely elastic isotropic solids, can be extended most conveniently to yield expressions 

for the components of the fields induced by such cracks. 

In Section 2, a summary is provided of the underlying basic three-dimensional equations which 

govern the deformation of piezoelectric quasicrystals and the fundamental constitutive equations of 

one-dimensional hexagonal piezoelectric quasicrystals with point group 6 mm are stated. A 

formulation is then given of the problem being studied here. The required components of the phonon 

and phason displacement and stress field and the electric potential of a moving screw dislocation are 

presented in Section 3, before an extension of the classical dislocation layer method is described and 

adapted in Section 4 to yield closed-form representations for the fields around the cracks. Illustrative 

numerical results are displayed graphically for the variation of the stress component ahead of a crack 

tip for a range of values of the geometric parameters. The results for the situation that has not been 

presented previously of a stationary row of cracks are deduced. As observed in the concluding 

Section 5, the solutions are also provided by this analysis to the problems of a moving single central 

crack within a finite plate and a finite plate having a moving edge crack in a piezoelectric 

quasicrystal. 

2. Fundamental Equations of Piezoelectric Quasicrystals and Problem Formulation 

The deformation fields within the linear theory of piezoelectric quasicrystals have components 
that are governed by the general three-dimensional equations which Altay and Dökmeci [5] have 
presented in both differential and variational invariant forms. In the absence of body forces and an 
electric charge density, the quasistatic equilibrium equations and the constitutive equations can be 
written compactly, relative to a fixed system of rectangular Cartesian coordinates ),,( 321 xxx , using 

a suffix notation where i, j, k, l = 1, 2, 3 with the adoption of the repeated suffices summation 
convention, as 

0,0,0 ,,,  iijiijiij DH ,         (1) 

kkijlkijklkllkijklij EewRuuc  ,,, 2/)( ,       (2) 

kkijlkijklkllkklijij EewKuuRH '2/)( ,,,  ,       (3) 

jijkjkijjkkjkiji EweuueD  ,,, '2/)( ,       (4) 

with a comma followed by p denoting partial differentiation with respect to xp for p = i, j, k, l. 
The components of the phonon stress and displacement, the phason stress and displacement and 

the electric displacement and field are denoted by ij , iu , ijH , iw , iD  and iE , respectively, and ijklc , 

ijklR , ijklK , ijke , ijke'  and ij  are the phonon elastic constants, the phonon-phason coupling constants, 

the phason elastic constants, the phonon and phason piezoelectric constants and the dielectric 
constants, respectively. 
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Here an infinite homogeneous one-dimensional hexagonal piezoelectric quasicrystal of point 

group 6 mm is considered that has a constant density, , and is initially in an undisturbed reference 
state which is free of stress and at rest everywhere. It is oriented, with reference to a system of fixed 

rectangular Cartesian coordinates (x, y, z), so that its periodic plane is the x-y plane and its 

quasiperiodic direction is that of the positive z-axis. 

A problem of mode III fracture is addressed in which a periodic infinite array of collinear, plane 

Griffith-type, moving, strip cracks of equal constant width 2c is embedded in such a material that is 

subjected to remote uniform phonon, phason and electrical loads. 

Within the piezoelectric quasicrystal, the created components XY , XY  and Xu  of the phonon 

stress and strain tensors and displacement vector, zXH , zXw  and Xw  of the phason stress and strain 

tensors and displacement vector, and XD  and XE  of the electric displacement and field vectors, for 

X and Y = x, y or z, are linked by the matrix constitutive equations 
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The constants involved are the phonon elastic moduli, ijc , the phason elastic moduli, iK , the 

phonon-phason coupling elastic moduli, iR , the piezoelectric moduli, ije  and ije' , and the dielectric 

moduli, ij , where i and j take integer values and the customary Voigt's contracted notation is being used. 

At time t, it is assumed that the cracks are moving uniformly parallel to their axes in their own 
planes with a speed v and occupy the regions tR  of the 0y  plane, where 

},0,22:),,({  zynhcvtxnhcvtzyxRt ,   (8) 

for n = 0, ±1, ±2, ... , with their centres at x = vt, vt ± 2h, vt ± 4h, ... , as illustrated in Figure 1. 

 

Figure 1. Row of strip cracks moving in the x-direction with constant speed v. 

It is appropriate to utilize a moving coordinate, , defined by 

vtx            (9) 

and an electric potential, , which is related to the electric field vector, E, by 

E          (10) 

The field variables in the antiplane deformation under consideration here are independent of z. 
Thus the required relations between the phonon and phason displacements' components, zu and zw , 

and the strain components involved become 

2c 

y 

O 

vt 

x

vt + 2hvt − 2h 
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and the corresponding components of the phonon and phason stresses and electric displacement are 

given by Eqs. (5) and (6) in the forms. 

xzxxzxzyzyyzyz EewRcEewRc 15441544 2,2   ,   (13) 

xzxxzzxyzyyzzy EewKRHEewKRH 1515 '2,'2   ,   (14) 

xzxxzxyzyyzy EweeDEweeD 111515111515 '2,'2   .   (15) 

Here, and subsequently, R  and K  are used as abbreviations for the constants 3R  and 2K  for the 

sake of brevity of presentation. 
With the solid subjected to phonon, phason and electrical loading such that  

infinityat ,, DHT  yzyyz DH ,   (16) 

where the constants T , H and D  are specified, an antiplane mode III deformation is induced. 
Similarly, an interested reader could develop the corresponding analyses to that given below if 

analogously any desired combination of three of the phonon, phason and electrical components 
,,,,, yzyzyyzyz DwH  or yE  are prescribed instead. 

3. Moving Screw Dislocation in a Piezoelectric Quasicrystal 

The stimulus is provided for the current study by the fundamental properties of the fields of a 
moving “piezoelectric quasicrystal screw dislocation”. This has a generalized Burgers vector which 
is extended from that of a traditional purely elastic screw dislocation. Across its slip plane, such a 
dislocation has discontinuities of finite magnitudes b in the component zu  of the phonon 

displacement, d in the component zw  of the phason displacement and 4b  in , the electric potential. 

Expressions have been derived explicitly by Wang and Pan [7] for the components of the fields 

created around a dislocation at the origin of this type, which is parallel to the z-axis and moves in a 

one-dimensional hexagonal piezoelectric quasicrystal with point group 6 mm with a speed v along 

the x-axis. These can be written, after appropriate rearrangement and some renaming of the terms 

and moduli of the medium as 
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where, here and henceforth, the superscript III indicates that the terms are related to the antiplane 

mode III deformation. 

It is convenient to put 
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Under antiplane shear conditions, the piezoelectrically stiffened wave speeds, 1s  and 2s , are 

given by 
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Then the phonon and phason stresses and electric displacement have non-zero components 

which can be deduced, using the constitutive equations (5) and (6), from Eqs. (17)–(19) in the forms. 
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If required, the corresponding components of the phonon and phason strain and electric field 

can be deduced analogously using Eqs. (17)–(19) together with Eqs. (10)–(12). 

4. Solution by Extending the Technique of Dislocation Layers 

The realization that an equivalent continuous planar array of elastic dislocations usefully models 

a strip crack in classical elastic materials inspired the development of the so-called “dislocation layer 

method”, as conveniently summarized, for example, by Bilby and Eshelby [19] and Lardner [20]. 

This fundamental method is suitably extended here to represent the moving row of shear cracks in 

piezoelectric quasicrystals by appropriately spreading a distribution of moving piezoelectric 

quasicrystal screw dislocations of the kind introduced in Section 3 above. 
To the right of each crack the screws are positive and they are negative to the left. The 

distributions of the components of the phonon and phason displacements and the electric potential 
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therefore have discontinuities with densities f ( ) , )(g  and )(4 f , respectively, which are 

stipulated as being odd functions of . 
The corresponding phonon and phason stresses and electric displacement then have relevant 

components at a point on the -axis given by Eqs. (26), (28) and (30) as 
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The Plemelj formulae indicate that a Cauchy principal value interpretation must be assigned to 

the improper integrals in Eqs. (31)–(33). 

To satisfy the imposed conditions (16), the dislocation array must fulfil the equilibrium 

equations that 

tyzyyz RDH in   )0 ,(,)0 ,(,)0 ,( IIIIIIIII DHT   .  (34) 

The system of three simultaneous equations which follows by substituting the representations 
(31)–(33) into Eqs. (34) can be solved to yield three singular integral equations for the densities f ( ) , 

)(g  and )(4 f  that, after considerable, intricate manipulation and algebraic simplification, can be 

written concisely as 
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However, the infinite integrals arising in Eqs. (35)–(37) can be rewritten as the summation of 

the separate contributions from the individual cracks. 
For example, by recalling the stipulation that the density functions must be odd, so that 

)()(   ff , and observing that )()2(  fnhf  , it follows using the relationship 
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together with partial fractions, that the left-hand side of Eq. (35) can be expressed alternatively (cf. 

Leibfried [21]) as 
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Further, this can be more concisely rewritten in terms of new variables given by 

)2/(sin),2/(sin),2/(sin 111 hhcch   ,  (40) 

so that finally the integral equation (35) for f ( )  is converted into the convenient form 
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which, by reverting to the original variables using Eqs. (40), becomes 
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The phason and electric densities satisfying the Eqs. (36) and (37) can be deduced analogously 

to be 
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With the necessary densities f ( ) , )(g  and )(4 f  now determined, explicit expressions for 

any of the components of the phonon and phason stress and electric fields which are required can be 
deduced from Eqs. (25)–(30) and (44)–(46). These generally depend not only upon the values of the 
loads T , H and D  which are applied and the geometric constants c and h, but also upon the 
piezoelectric quasicrystal material moduli and the speed v of the cracks. 
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However, in considering practical criteria for the fracture of materials, traditionally there is 

especial interest in the components’ magnitudes directly in front of the tip of a crack. 

The component of the phonon shear stress on the y = 0 plane, for example, is obtained as the 

sum of the contributions from all the image cracks. Using a summation of finite integrals as a 

replacement for the resulting infinite integral and recalling Eqs. (38) and (39) gives 
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where )())2/((sin)( 111  ghgg  , )())2/((sin)( 441141  fhff  . The substitution into 

this of the expressions (44)–(46) for 1f , 1g  and 41f  appears to yield extremely unwieldy terms, but 

extensive rearrangement and manipulation leads to 
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Evaluation of the involved integral using the method of contour integration in complex variable 

analysis and the relationships (40) ultimately gives 
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Analogously, the components of the phason stress and electric displacement on the y = 0 plane 

are found to be 
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It is appropriate to extend the classical notion of a stress intensity factor for a stationary crack 
within a purely elastic material to moving cracks in piezoelectric quasicrystals. The phonon and 
phason stress and electric displacement intensity factors, TK , HK  and DK , respectively, can thus be 

defined and evaluated, from Eqs. (49)–(51), in the forms 
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As observed above, the density functions given by Eqs. (44)–(46) depend upon the values of the 
piezoelectric quasicrystal material constants, as well as the loads applied and the parameters c, h and 
v. However, it is of interest to note that on the otherhand the stress intensity factors, TK , HK and DK , 

given by Eqs. (52)–(54), each depend only upon c and h and the respective applied loads T , H , D . 
Curves are depicted in Figure 2 to representatively illustrate graphically the variation with c/  

of the non-dimensional, scaled phonon stress component T/)0 ,( yz  (and likewise those of 

H/)0 ,(zyH  and D/)0 ,(yD ) for various values of hc / . The curves display the same basic 

shapes for different values of hc / . But as the ratio hc /  increases in magnitude the intensity of 
T/)0 ,( yz  also increases. 

It is apparent, from Eqs. (44)–(46), that the analysis above is invalid when 0
2

44  RKc  or 

01   or 02  . From the definition (22), the value of i  is zero when the crack speed, v, is equal 

to the wave speed is , for i = 1, 2, under antiplane shear conditions given by Eq. (23). 

The reported data for the values of the material constants of one-dimensional hexagonal 
piezoelectric quasicrystals are still somewhat variable. However, typically Li et al. [9] report 

210
44 Nm100.5 c , 29 Nm102.1 R , 28Nm100.3 K , 2

15 Cm138.0 e , 
2

15 Cm160.0' e , 21212
11 mNC106.82  , which, with representatively 33 m kg101.5  , 

give these wave speeds to be 1
1 ms3139 s  and 1

2 ms333 s . Moreover, it is clear that
2

44 RKc 

does not vanish, since the value of Kc 44  is much greater than that of 
2

R . 
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Figure 2. Variation with c/  of the scaled stress component T/)0 ,( yz  for a range 

of values of hc / . 

Finally, an analysis of a row of stationary cracks in piezoelectric quasicrystals has not been 
presented previously and therefore it is worthwhile highlighting briefly the considerably simplified 
results as a special case of the current analysis. When 0v , from Eq. (22), 121    and then the 

densities given by Eqs. (44)–(46) simply become 
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and these enable any of the components of the phonon, phason and electric fields around the 

stationary cracks to be derived as desired. 

5. Conclusions 

The analysis is focussed on adapting and extending the traditional dislocation layer method of 

elastic media for studying cracks in one-dimensional piezoelectric quasicrystals. 
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Explicit expressions for the phonon, phason and electric field components of an infinite row of 

mode III, moving Yoffe-type constant-width cracks in piezoelectric quasicrystals are derived. 

Illustrative graphs of the variation of the components of the field along the axis ahead of a crack tip 

are displayed for a range of the geometric parameters. 
The phonon, phason and electric densities are distributed antisymmetrically about the planes 

hx ± and thus clearly by an image construction the components of the phonon and phason stress 

and the electric displacement, xz , zxH  and xD  vanish on these planes. Therefore the analysis 

above also describes the piezoelectric quasicrystal fields around a moving single crack originally 
occupying the region cxc   of a finite piezoelectric quasicrystalline plate hxh  , with 
load-free surfaces hx ± . 

Further, the solution for an edge crack cx 0  moving in a finite plate hx 0  is also 
provided, since the distributions are odd about 0x . 
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