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Abstract: Since the initial identification of a COVID-19 case in Wuhan, China, the novel disease
quickly becomes a global pandemic emergency. In this paper, we propose a dynamic model that in-
corporates individuals’ behavior change in social interactions at different stages of the epidemics. We
fit our model to the data in Ontario, Canada and calculate the effective reproduction number Rt within
each stage. Results show that Rt > 1 if the public’s awareness to practice physical distancing is rela-
tively low and Rt < 1 otherwise. Simulations show that a reduced contact rate between the susceptible
and asymptomatic/unreported symptomatic individuals is effective in mitigating the disease spread.
Moreover, sensitivity analysis indicates that an increasing contact rate may lead to a second wave of
disease outbreak. We also investigate the effectiveness of disease intervention strategies. Simulations
demonstrate that enlarging the testing capacity and motivating infected individuals to test for an early
diagnosis may facilitate mitigating the disease spread in a relatively short time. Results also indicate a
significantly faster decline of confirmed positive cases if individuals practice strict physical distancing
even if restricted measures are lifted.
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1. Introduction

The coronavirus disease 2019 (COVID-19) has become a public heath emergency worldwide and
has brought unprecedented challenges to the entire society. This novel disease was initially identified
in Wuhan, which is a city with a dense population in China. Since its initial discovery in late December
2019, the disease soon spread worldwide and caused over 17, 106, 000 total infections and more than
668, 900 deaths until July 30, 2020 [1].

Similar to other coronaviruses, this novel pneumonia is transmitted primarily via close contact be-
tween susceptible and infected individuals [1]. Studies also show that the virus can survive on object
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surfaces from a few hours to a few days, which leads to possible disease transmission through touch-
ing contaminated surfaces [2]. Also, the disease is highly transmissible, not only from symptomatic
infected individuals to susceptible population, but also from asymptomatic carriers to susceptible in-
dividuals [3–6]. Currently, there are no vaccines available and therefore the main intervention strate-
gies of disease transmission are nonpharmaceutical. The aforementioned characteristics of the disease
transmission impose difficulties to mitigate the disease outbreak.

The first confirmed positive case of COVID-19 in Ontario, Canada was identified on January 28, as
a person who had traveled to Wuhan during that time [7]. The number of confirmed infected population
in Ontario remained low in February (less than 10 in total) and all the positive cases were travel related.
However, the disease transmission escalated rapidly starting early March. Evidence of community
transmission was identified and the first deceased case with no travel history or close contact in Ontario
was recorded on March 17 [7]. Soon after that, Ontario became one of the provinces in Canada with
the most severe disease infection.

The rapidly deteriorated disease status raised serious concerns among public heath specialists and
in public. As a result, the Ontario government declared a state of emergency and ordered the closure
of all nonessential businesses on March 17. Restrictive measures are effective in mitigating the disease
spread in a short-term but also lead to huge economic loss and social disruption. As a vital part of the
nonpharmaceutical intervention, people were instructed to keep a physical distancing when appeared
in public. This measure is expected to reduce the probability of infection for an individual because it
reduces the contact rate between the susceptible and infected individuals. However, the effectiveness
of this measure depends largely on the awareness and cooperation of the public and how individuals
practice physical distancing in daily social activities.

Starting in May, with a steady decline of the daily confirmed cases, a number of nonessential busi-
nesses reopened according to Ontario government’s multi-phase reopening plan. The lift of stringent
measures is associated with risks of a second wave of the disease spread. More importantly, the reopen-
ing may serve as a message indicating less severity of the disease and inevitably changes individuals’
behavior. This further leads to an increasing probability of infection if individuals do not practice
physical distancing effectively.

Since the initial disease outbreak, mathematical models have been used widely to predict the trend
of disease spread and study the mitigation strategies (see [8–16] for example). Both deterministic
and stochastic models are fitted to data in different geographical regions, including Ontario Canada,
see [17–20] for example. However, many of the fittings are based on data at early stages of the disease
outbreak only. While the aforementioned results are valuable, models calibrated for early stages do not
incorporate individuals’ behavior change induced by social awareness.

In this paper, we propose a dynamic model where the contact rate between susceptible and infected
individuals varies with the different severity of disease spread. The model is fitted to the data in Ontario,
Canada for illustration. The main objective of this paper is to study the role of social awareness in
practicing physical distancing in mitigating the disease spread. We also make short-term predictions
about the disease outbreak, assuming that businesses reopen and the practice of physical distancing is
loosened.
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2. Methods

2.1. Data

The COVID-19 data in Ontario is publicly accessible and contains information such as reporting
date, daily number of confirmed cases, daily completed tests, current number of patients who are in
intensive care units (ICU) etc. The data is collected from 34 heath units across Ontario and is updated
on a daily basis [7]. As discussed above in the Introduction, both the number of cumulative infected
cases and the number of reported symptomatic cases remained quite low in January and February and
hence are not included in the figures below.

Figure 1(a) shows the number of cumulative confirmed cases of COVID-19 from March 2 to
May 18. It clearly indicates an exponential growth of the confirmed cases in an early stage of the
disease spread. Figure 1(b) shows the daily number of positive cases who are still actively contagious.
The data in Figure 1(b) excludes the disease related deaths and the recovered individuals. In Ontario,
instructed by the Ministry of Heath, recovered cases are defined as confirmed infected individuals who
are hospitalized but recover from the disease or individuals who are not hospitalized but are over a
14-days period since the reporting date of infection [7].
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(b) Active confirmed positive cases

Figure 1. Panel 1(a) and panel 1(b) show data from March 2 to May 18, 2020, in On-
tario, Canada. 1(a) demonstrates the cumulative confirmed cases; 1(b) indicates the daily
confirmed cases who are still active in transmitting the disease.

2.2. The model

We propose a compartmental model based on different status of individuals in the epidemics, as
shown in diagram 2. The model is stratified to include the following classes: susceptible (S ), exposed
(E), asymptomatic (A), symptomatic but not reported to public heath agencies (U), symptomatic and
isolated or hospitalized (I), and recovered (R).

In this model, we assume that individuals in the exposed class (E) as individuals who have con-
tracted the COVID-19 virus but are in the incubation period and are not contagious yet. Asymptomatic
individuals (in the compartment A) are individuals who are infected with the virus but do not show
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Figure 2. The flow chart for model (2.3).

symptoms of infection. Unreported infected class (U) includes individuals who have contracted the
virus but merely show mild symptoms and therefore do not visit medical facilities for diagnosis. Indi-
viduals who show symptoms of infection and report themselves to public heath agencies are classified
as the reported infected class (I).

We assume that only asymptomatic and unreported infected individuals (in compartments A,U)
are contagious and may transmit the disease. In compliance with the disease intervention policies in
Ontario, reported infected individuals are either self-isolated at home assuming they experience mild
to moderate symptoms or hospitalized if they develop serious symptoms. In either way, the confirmed
cases are monitored and actively isolated from the susceptible community and hence have very low
risk of transmitting the disease. Infected individuals may move to the recovered class (R) if they are
cured of the disease and are no longer contagious.

Susceptible individuals may contract the virus via contacting the infected individuals and move to
the exposed class. During the pandemic, disease intervention strategies such as closure of all nonessen-
tial businesses reduce the contact rate between susceptible and infected individuals to a large extent but
certainly cannot disrupt all social activities. The effectiveness of these measures still depends largely
on how individuals practice physical distancing. Individuals are prone to reduce social activities and
take extra precautious measures to prevent infection if they consider the disease spread as severe. How-
ever, on the other side, individuals may relax the practicing of physical distancing if they evaluate the
risk of being infected as low.

During the pandemic, individuals have easy access to media reporting, where daily confirmed num-
ber of infected population is updated and broadcasted in a timely manner. Naturally, the reported
infected population serves as a direct indicator about the severity of disease. This together with gov-
ernment policies inevitably alter individual behaviors and affect the effectiveness of practicing physical
distancing.

Therefore, it is more important to assume that the contact rate between susceptible and infected
individuals changes at different stages of the epidemics, rather than a constant at all time. We assume
the contact rate as

β1(1 − f (I)), (2.1)

where β1 is the baseline contact rate in a disease-free status and f (I) represents the contact rate reduc-
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tion due to the practice of physical distancing. To start with the simplest model, we propose f (I) to be
a piecewise function as

f (I) =


α1, if 0 < I < I1,

α2, if I1 < I < I2,

α3, if I2 < I,

(2.2)

where αi are constants with the relation α1 < α2 < α3 < 1, and I1, I2 are constants with I1 < I2. The
piecewise contact rate (2.2) reflects the progression of the extent and effectiveness of disease interven-
tion strategies when the disease enters different stages. The contact rate is reduced to a larger extent if
the reported infected population is larger. However, the contact rate cannot be reduced infinitely and
must attain a minimum value of β1(1−α3) because essential social activities are inevitable. It is worth-
while to mention that in [15], the authors also studied the effectiveness of media reporting in reducing
the COVID-19 spread but they proposed a different model by incorporating the media number as a
state variable. Here, we model the media impact implicitly but associate its impact with an individual’s
behavior change that reflects on the contact rate reduction on the community level.

Based on the aforementioned discussions, we propose the dynamic model as

dS
dt

= −β1(1 − f (I))AS − β2(1 − f (I))US

dE
dt

= β1(1 − f (I))AS + β2(1 − f (I))US − µE

dA
dt

= µρ1E − η1A (2.3)

dI
dt

= µ(1 − ρ1 − ρ2)E + τU − η3I − δI

dU
dt

= µρ2E − η2U − τU

dR
dt

= η1A + η2U + η3I,

where f (I) is defined above in (2.2) and the other parameters are summarized in Table 1 in Section 3.

2.3. The reproduction number

The effective reproduction number Rt is defined as the average secondary infections caused by an
infected individual at a time event t. By its definition, it serves as a threshold to predict the disease
spread. The disease spread increases at time t if the effective reproduction number is larger than 1
but declines if the reproduction number is smaller than 1. The effective reproduction number extends
the basic reproduction number R0 and reflects the decline of susceptible population. Let S t denote the
susceptible population at time t. In [21, 22], the authors showed that for an autonomous model where
parameters are constants, the effective reproduction number satisfies Rt = (S t/S 0)R0. We calculate the
basic reproduction number R0 of (2.3) by using the next generation matrix method for compartmental
models [23].

Direct calculations lead to the effective reproduction number as

Rt =
(1 − f (It))

[
β1ρ1η2 + β1ρ1τ + β2η1ρ2

]
S t

η1 (η2 + τ)
, (2.4)
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where f (It) is defined in (2.2). Because the contact rate reduction term f (It) is defined as a piecewise
function, we expect to obtain different Rt in each interval of I. We will estimate the values of I1, I2 that
best fit the data and calculate Rt accordingly in the following analysis.

2.4. Parameter estimation

In (2.3), ρ1 represents the proportion of exposed individuals who eventually move to the asymp-
tomatic class, ρ2 is the proportion that goes to the unreported infected class, and the remaining
(1 − ρ1 − ρ2) proportion moves to the reported infected class. We find reasonable ranges for ρ1 and
ρ2 from [24–26]. Mizumoto et al. analyzed the data that documented the passengers on the Diamond
Princess cruise ship and found that 18% of the passengers never developed symptoms [24]. Nishiura
et al. studied evacuees from Wuhan to Japan and found that 31% of the evacuees who tested posi-
tive infection of COVID-19 virus never showed any symptoms [25]. Considering that the majority of
passengers from the Diamond Princess cruise ship are at older ages, who are more likely to develop
symptoms once being infected, it is safe to assume that ρ1 = 30%. A recent statistical based study
of the COVID-19 outbreak in Wuhan [26] showed that 59% of the individuals exposed to the virus
did not show symptoms or only showed mild symptoms and therefore were not recorded by the public
heath agency. Overall, among a homogeneous population, it is reasonable to believe that asymptomatic
and unreported infected individuals with mild symptoms consist of 50–60% of the total infected pop-
ulation. Equivalently, in model (2.3), this evidence suggests that ρ1 + ρ2 = 50–60%, which leads to
ρ2 = 20–30%. In our simulation, we fix ρ2 = 30% to fit the data.

In [5], the authors showed that the average incubation period for an individual from being exposed
to the COVID-19 virus to the symptom onset is 5.2 days. In a separate study [3], the authors showed
that a person exposed to the virus may shed the virus and be contagious 48 to 72 hours before starting
to experience symptoms. In (2.3), individuals in the exposed class (E) are infected with the virus but
are not yet contagious. Hence, it is reasonable to assume that the transition rate from exposed class to
asymptomatic class/unreported infected class/reported infected class as µ = 1/3.

Due to the course of infection, a patient may experience a sudden deteriorated heath condition and
seek for medical help at a later stage [27]. As a consequence, individuals from the unreported infected
class with mild symptoms may move to the reported infected class at a rate of τ. The parameter τ is
estimated from data fitting via the MCMC algorithm.

In (2.3), asymptomatic individuals, unreported infected individuals and reported infected individu-
als progress to the recovered compartment at a rate of η1, η2, η3 respectively. In [10], the authors stud-
ied the importance of detecting the unreported infected cases in controlling the COVID-19 in Wuhan,
China. The authors assumed that the recovery rate of infected individuals that include both reported
and unreported classes varied between 1/7–1 and found that 1/7 provided the best fitting. Hence, in
our model, it is reasonable to assume that η1 = η2 = 1/7 = η3 = 1/7.

The total number of residents in Ontario is 14570000, which gives S 0 = 14570000. The number
of active infected cases at initial time (April 16 from the data) is 4344 and therefore I0 = 4344. The
initial population of exposed class (E0), asymptomatic class (A0), and unreported infected class (U0)
are estimated from the MCMC simulations respectively.

The baseline contact rates between susceptible and asymptomatic/unreported symptomatic individ-
uals β1, β2 are set to be identical because there is no significant social interaction difference between
these groups.
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We fit our model to data by the Markov Chain Monte Carlo (MCMC) method and adopt the adap-
tive Metropolis-Hastings algorithm to carry out this approach [28]. The algorithm is run for 10,000
iterations with a burn-in of the first 7000 iterations. Geweke convergence test is employed to diagnose
the convergence of the Markov chains.

The estimated parameters and initial data are listed in Table 1. The model (2.3) is fitted to the
data from April 16 to May 18 in particular. Figure 1 shows that the reported infected population
undergoes two different stages of growth. Both Figures 1(a), 1(b) indicate that the reported infected
population grows exponentially in the entire March and in early April. Followed by that, the growth
rate slows down but the daily reported infected population continues to increase until late April. There
are a number of reasons why the reported infected population increases in two distinct stages. One
reason is that in the early stage, the disease outbreak risk in Canada was believed to be low and as a
result, social activities among public remained unchanged. Starting mid March, aggressive measures
such as school closure, shutting down of all non-essential businesses, mandatory 14-days self-isolation
for all travelers etc. have been imposed by the government. Consequently, the contact rate between
susceptible population and infected population has been reduced by a large extent.

Another important reason for the two-stage growth is the significant increase in testing capacity
over time. In Ontario, the daily number of testing starts as low as 2000 provincial wide in the early
stage and ramps up to as high as 20000 later, which is the province’s target. Unfortunately, the data
set in [7] doesn’t include records of the daily testing number for the dates before April 15. To avoid
large noise in data caused by the testing capacity, the model is fitted to a period where the daily testing
finished remains relatively stable, i.e., between April 16 and May 18. After that, Ontario moves into the
first stage of reopening and a testing policy targeting at wider communities has been updated, which
inevitably affects the social interaction patterns and testings.

3. Results

(1) Fitting results
By fitting model (2.3) to the data in Figure 1(b) via the MCMC algorithm, we obtain the result, as

indicated in Figure 3. Figure 3(a) shows a good fit of the model solution I(t) and the data of reported
infected population. Figure 3(b) demonstrates the predictive envelopes of the 95% credible interval.
The fitting indicates that under the current social distancing measures, the number of active infected
cases will decline steadily over a period of approximately 140 days until reaches a flattened plateau
phase. The total number of reported infected population will decline to approximately 950, within a
range of 500−1500. The prediction indicates that the disease will not likely die out in a short amount of
time but rather persist in communities over a relatively long period. However, if we compare the peak
value of reported symptomatic population with the predictive number of reported symptomatic cases
who will enter the plateau phase, we find a significant decline. Although active symptomatic cases will
not drop drastically to 0, controlling this number at a relatively low level could alleviate the stress of
the entire heath care system. This suggests that current disease intervention strategies combined with
adequate awareness from the public of practicing the physical distancing are effective in preventing a
further outbreak.

Next we analyze further why the disease intervention strategies and social awareness are effective
in mitigating the disease spread. As calculated in (2.4), the effective reproduction number serves as
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Table 1. Parameter estimates for the COVID-19 epidemics in Ontario, Canada.

Parameter Definition
Estimated

Mean Value
Standard
Deviation

Data
Source

β1
Contact rate between

S and A
5.3533 × 10−8 3.4044 × 10−9 MCMC

β2
Contact rate between

S and U
5.3533 × 10−8 3.4044 × 10−9 MCMC

α1
Contact rate
reduction 1

0.1288 0.011 MCMC

α2
Contact rate
reduction 2

0.5615 0.0322 MCMC

α3
Contact rate
reduction 3

0.6051 0.0299 MCMC

µ
Transition rate from

E to A/U/I
1/3 − [5]

ρ1
Proportionality of
transferred E to A

0.3 − [25]

ρ2
Proportionality of
transferred E to U

0.3 − [26]

η1 Recovery rate of A 1/7 − [10]
η2 Recovery rate of U 1/7 − [10]
η3 Recovery rate of I 1/7 − [10]

τ
Transition rate from

U to I
0.3541 0.0529 MCMC

δ Disease death rate of I 0.001 9.0254 × 10−5 MCMC

I1
Upper limit for contact

rate reduction 1
940.29 57.216 MCMC

I2
Upper limit for contact

rate reduction 2
3737.4 209.37 MCMC

Initial Value Definition Estimated Mean Value Standard Deviation Data Source
S (0) Initial susceptible population 1.457 × 107 − [7]
E(0) Initial exposed population 6216 583.56 MCMC
A(0) Initial asymptomatic infected population 1940.6 212.93 MCMC
I(0) Initial reported infected population 4344 − [7]
U(0) Initial unreported infected population 939.35 146.05 MCMC
R(0) Initial recovered population 4194 − [7]

the average number of infections that an infected individual may cause at time t. The definition of Rt

naturally indicates that a disease may continue to develop and persist in a community if Rt > 1 while
the disease declines if Rt < 1. From the parameter values in Table 1, we obtain the estimated values of
Rt in a piecewise format as

Rt =


1.8371, if 0 < I < I1,

0.9232, if I1 < I < I2,

0.8327, if I2 < I.

(3.1)

The estimated mean values of I1 = 940.29, I2 = 3737.4, and I(0) = 4344 suggest that in a short
window of time staring April 16, the contact rate between the susceptible and infected individuals is
reduced by 1 − α3, which leads to Rt = 0.8327. By referring to the estimated mean value of α3 in
Table 1, we find that the contact rate is effectively reduced by 60% from the contact rate during normal
social activities. During this time window, the number of reported infected cases continues to increase
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Figure 3. The fitting result of model (2.3) to the reported infected population between
April 16 and May 18 in Ontario, Canada. 3(a) shows the fitting of I(t) and the data; 3(b)
shows the predictive envelope of I(t). The greyed area in Figure 3(b) demonstrates the 95%
CI from the MCMC estimation.

because the population of asymptomatic and unreported infected individuals who are contagious is
increasing during this time. However, because Rt < 1, the number of reported infected cases quickly
starts to decline. When I(t) reaches I2, the contact rate between the susceptible and infected population
is reduced by a less suppressed degree as 1 − α2. Following this new social interaction pattern, the
reported infected cases continue to decline but at a slower rate.

Figure 3(a) shows that on May 18, the number of reported symptomatic cases falls between the
estimated values of I1 and I2. This suggests that following May 18, based on the current public’s
awareness of practicing physical distancing, the contact rate remains to be reduced by 1−α2. However,
with the gradual reopening of businesses provincial wide and less restrictive public heath interventions,
community members may lose fear of getting infection at least to some extent. This will inevitably
lead to increased social activities and may also result in a bounced back contact rate.

(2) Relaxed physical distancing
To study the impact of relaxed social awareness on the trend of disease spread, we vary values of α2.

Figure 4(a) demonstrates that even with a slightly decreased α2, the reported symptomatic population
bounces back from the originally projected decay. All decreased α2 predict a second wave of the
disease outbreak before the disease status progresses to a plateau phase again. A larger α2 is also
associated with a higher peak of a second wave and an earlier time when the peak attains. Figure 4(a)
also indicates that although a second wave is highly like to occur with an increasing contact rate, the
magnitude of the second wave is less than the magnitude of the first one.

We also visualize the number of unreported infected cases with different contact rate α2. Figure 4(b)
shows that under the estimated α2 from Table 1, the unreported infected population is projected to
decrease steadily after May 18. By the assumptions of (2.3), the unreported infected individuals are
contagious and may transmit the disease. Hence, a declined population in this class will mitigate
the further disease outbreak. However, an increased contact rate shifts the trend from decrease to
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increase and further leads to an oscillation of the unreported infected cases. The plot of populations
in the asymptomatic class A with different α2 is similar and is thus omitted. Still, individuals in the
asymptomatic class are contagious and a number bounced back indicates a halted mitigation of disease
spread.
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Figure 4. Sensitivity analysis with respect to the contact rate α2. 4(a) shows the number of
reported symptomatic individuals under different contact rate α2; 4(b) shows the number of
unreported infected cases with different α2.
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Figure 5. The reported symptomatic population under different τ and I2 respectively.

(3) Disease intervention strategy
We explore possible disease intervention strategies that can be manipulated via altering an individ-

ual’s behavior or affecting an individual’s awareness of practicing physical distancing. In model (2.3),
parameter 1/τ represents the average waiting time that an infected individual with mild symptoms
spends before visiting medical facilities for diagnosis. The unreported infected cases are contagious
and may be more active in social interactions than the reported infected cases because they lack con-
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firmative information of their infection and therefore are not required to comply with the mandatory
self-isolation. Figure 5(a) shows that the number of reported symptomatic cases decreases more rapidly
if the average waiting time 1/τ is decreased or equivalently the transition rate from class U to I is in-
creased. Practically, reducing the waiting time by 25%, 50%, 75% implies that an individual with mild
symptoms now waits for an average of 0.7, 1.4, 2.1 days less respectively before seeking for medical
help. Shortening of the waiting time can be achieved by updating the testing policies. More efficiently
and economically, the task can be fulfilled by educating the general public to have the correct altitude
towards recognizing the common symptoms of infection and report to public heath agencies in a timely
manner.

If the waiting time 1/τ is decreased by 25%, 50%, 75% respectively following May 18, the reported
infected population increases slightly over a short period of time instead of a monotonic decrease.
However, once it is peaked, the reported infected population starts a sharp decrease. Figure 5(a) shows
a consistent pattern that the number of reported infected cases stays at a much lower level as long as
1/τ is decreased. This indicates that reducing the waiting time for unreported infected individuals to
be diagnosed can effectively mitigate the further disease outbreak.

Figure 5(b) shows the number of reported symptomatic cases under different I2. With the estimated
parameters in Table 1, the fitting projects the decay of reported symptomatic population. A decreased
threshold I2 doesn’t change the trend of disease spread. Simulations show a consistent pattern that the
reported symptomatic cases decline more quickly with a decreasing number of I2 following May 18.

Given I(t) = 3415 on May 18 and the estimated parameters from Table 1, particularly I1 =

940.29, I2 = 3737.4, the contact rate remains in the range where it is reduced by 1 − α2 for some ex-
tended period. However, in simulations, a decreasing I2 suppresses the contact rate further to βi(1−α3)
following May 18. Figure 5(b) shows a drastic decline of the reported symptomatic population with a
decreased I2. The result suggests that a greater suppression of contact rates in a wider range leads to a
much more controllable epidemic situation.

Note that manipulating the threshold values I1, I2 for the piecewise contact rate (2.2) is different
from manipulating the contact rate βi(1 − α j) for i = 1, 2, j = 1...3. By varying I1, I2, the contact rate
within each stage remains unchanged. However, I1, I2 are related to the timing of reopening for each
stage. From the view of designing disease intervention strategies, the result suggests that it is neither
necessary nor practical to impose more restrictive measures to the entire community. The current
intervention measures and practice of physical distancing among community members are effective
enough to bring down the reported symptomatic cases. However, following the multi-phase reopening
plan, the timing when restrictive measures are lifted in each phase is critical. Moreover, it is important
to continue educating the public about the importance of practicing physical distancing such that the
contact rate remains identical in each phase.

4. Conclusion and discussion

Since the initial identification of COVID-19 in Wuhan, China, the disease quickly rises global pub-
lic heath concern. In Ontario, Canada, the first positive case was identified in late January, as a case
directly linked to travel history. However, evidence of community transmission was later recorded and
followed by a serious outbreak starting mid March. The Ontario government then imposed restrictive
measures to intervene the disease spread. Because of a lack of effective vaccines, the disease interven-
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tion strategies are mainly nonpharmaceutical. Nonessential businesses were closed and people were
required to keep a physical distancing when appeared in public. The main objective of these non-
pharmaceutical interventions is to reduce the contact rate between susceptible individuals and infected
individuals. The restrictive measures combined with the practice of physical distancing are effective in
mitigating the disease spread. Starting in May, with a steady decline of the confirmed cases, Ontario
government declared a multi-phase reopening plan. The lift of restrictive measures is associated with
great concern of a second wave of the disease outbreak.

In this paper, we propose a dynamic model and incorporate a piecewise contact rate between the
susceptible and infected population. We consider that the contact rate is not a constant but depends
on the severity of disease outbreak. The piecewise contact rate also reflects the public’s awareness of
practicing physical distancing because individuals are prone to take more precautious measure from
contracting the virus if they perceive that the risk of getting infection is high. The risk of infection
is linked directly to the total number of infected cases where the data is easily assessable via media
reporting.

The model (2.3) is fitted to the data in Ontario, Canada between April 16 and May 18 and the fitting
result is good. Based on the estimated parameters, we calculate the effective reproduction number Rt

within each interval. The simulations project that the disease declines steadily but will not disappear in
a relatively long time. In a worse scenario, an increasing contact rate α2 shifts the originally decreasing
I(t) to an increasing trend again before I(t) reaches a plateau phase. The result suggests the importance
of maintaining the contact rate at a low level in preventing a second wave. Considering the fact that
Ontario is entering into a phase of reopening, and normal social activities resume, we investigate
strategies that may mitigate the disease outbreak given the contact rates unchanged.

Simulation results show that encouraging individuals with mild symptoms to visit medical facilities
and get diagnosis as soon as possible is an effective disease intervention strategy. The results also
show that given the identical effectiveness of practicing physical distancing, imposing more restrictive
measures for some extended period even when disease is less severe facilitates the disease decline.

Our model can be further calibrated to include multi-groups such as individuals in different ages,
geographical locations etc. In order to do that, the data needs a further investigation accordingly, which
leaves as further work.
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