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Abstract: Traditional 3D block matching (BM3D) algorithms are among the best denoising methods 

at present; however, they exhibit the issue of ringing around image edges, which makes them unable 

to protect image edges and details. Therefore, this paper proposes an BM3D noise processing 

algorithm for the diffusion equation to reduce image noise without affecting image details, 

specifically at the edges. This method first uses anisotropic diffusion (AD) filtering for image 

preprocessing, and then uses the edge direction instead of horizontal direction to search for similar 

blocks. The AD model is mainly improved to achieve better edges and detailed processing effects. 

Firstly, with the improved AD direction, a 5 × 5 edge enhancement operator model is implemented in 

eight directions, and the corresponding gradient information is obtained. This operator improves the 

processed image edges to achieve clear contours and good continuity. Next, a new calculation 

method for the diffusion function, whose coefficient is constructed using a hyperbolic tangent 

function, is introduced. The proposed method is based on the link between the image gradient and 

diffusion function, and it is mathematically proven that the diffusion function converges faster than 

the diffusion function of the model proposed by Perona and Malik. Experimental results indicate that 

the improved model can effectively retain the image edges and texture details, avoid edge ringing, 

and provide significant improvements in terms of the subjective visual effects and objective 

numerical indicators.  

Keywords: anisotropic diffusion; diffusion function; edge detection; image gradient; 3D block 
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1. Introduction  

A large amount of noise is produced during image acquisition and transmission. The reduction 

of such noise is critical in image processing. This noise processing directly determines the feasibility 

and accuracy of several parts of image processing, including image segmentation, image 

classification, feature extraction, and pattern recognition. The objective of image denoising is to 

reconstruct images that are degraded by noise corrosion to improve their quality and consequently 

improve the interpretation and extraction of data. At present, there are many types of image 

denoising algorithms. Commonly used algorithms include the mean filtering method [1], variational 

and partial differential equation (PDE) method [2], and wavelet transform threshold method [3]. 

These concepts are implemented in local neighborhoods. Buades et al. proposed a non-local mean 

noise reduction method [4]. Dabov et al. [5] proposed a three-dimensional block-matching 

collaborative filtering algorithm based on the non-local mean algorithm. This algorithm combines 

the advantages of spatial and frequency domain denoising and provides one of the highest levels of 

image denoising in terms of objective evaluation criteria such as peak signal-to-noise ratio (PSNR) 

and subjective visual quality. The disadvantage of the Wiener filtering method used in the 

collaborative filtering of the BM3D algorithm is that the amount of calculation is relatively large. 

Further, it is easy to generate a ringing effect, and important image features are often lost when 

images with rich details and complicated boundaries are processed. Several researchers have 

attempted to improve the BM3D algorithm [6–9]. In 2015, Zhong et al. [6] proposed different 

contraction functions for different norm constraints, making better use of the sparseness and 

non-local similarity of wavelet functions. In 2017, Wang et al. [9] proposed a method of estimating 

the noise intensity using total variation values, making the block size and similar distance between 

blocks adaptive to the noise intensity. Although these algorithms have achieved better image 

denoising effects than the original BM3D filtering algorithms, they do not adequately protect image 

details and blur the image edges. 

The PDE method can more suitably address the trade-off between noise reduction and edge 

retention. The most typical method is the anisotropic diffusion (AD) equation [10] proposed by 

Perona and Malik (P-M). The denoising principle in this model involves constructing a diffusion 

function according to the gradient of images. There is a large gradient at the edge and a small 

gradient in the flat area to help filter image noise while retaining edge information. Although AD has 

made remarkable advancements in image filtering, it still possesses many shortcomings such as the 

staircase effect, ill-posedness of the P-M equation, and deficiencies of the edge stop function. Catte 

et al. [11] proposed a regularized P-M model that eliminated the shortcomings associated with the 

inability to filter large noise points. Gilboa et al. [12] proposed a forward–reverse AD model that 

effectively enhanced image edge information. AD filtering is an iterative process that relies on 

parameters such as the diffusion coefficients and number of iterations. Therefore, methods of 

optimizing these parameters and improving the denoising effects have been proposed [13–15]. In 

2016, Tebini et al. [16] proposed a diffusion function derived from a hyperbolic tangent function. 

The convergence speed of the flow function is much greater than that of the diffusion function in the 

P-M model, which accelerates the denoising rate of the model and reduces the number of 

calculations required. Other researchers have proposed various AD methods [17–22] for denoising 

while preserving the image content and avoiding staircase effects. 
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According to the above analysis, on the basis of making full use of the P-M model, this paper 

presents for the first time a diffusion coefficient function based on the hyperbolic tangent function, 

using the gradient information of the eight neighborhood directions of the image to perform AD 

filtering. Thin lines, weak edges, and textures and details are effectively retained. Next, similar blocks 

in the vertical and edge direction are searched for to accomplish denoising. The denoised image 

effectively retains image details and avoids the edge ringing effect caused by the BM3D algorithm. 

The remainder of this paper is organized as follows. Section II introduces the basic theory of the 

BM3D and AD algorithms, then briefly describes the improvements made to the AD model. Section 

III discusses the improvements made to the existing BM3D algorithm, combining the advantages of 

the AD and BM3D image denoising algorithms. It mainly describes the improvement of the AD 

model from the aspects of edge detection and diffusion function and presents a quantitative analysis 

of the superiority of the improved model. Section IV uses the PSNR and structural similarity 

(SSIM) [23] as objective indicators to quantify and compare the experimental simulation results and 

to compare the filtered results obtained using subjective vision. The results show that compared with 

the non-local methods (NLMs) and BM3D filtering methods, the proposed algorithm more 

efficiently filters image noise and maintains image details, and it effectively avoids edge ringing. 

Finally, Section V summarizes the conclusions and future research prospects. 

2. Related work 

2.1. Basic theory of BM3D image denoising algorithm 

The BM3D algorithm is a 3D joint filtering algorithm based on the concept of the NLM 

algorithm proposed by Dabov et al. This method combines the advantages of spatial and transform 

domain filtering. The denoising effect achieved is ideal. Not only does this approach provide a very 

good subjective visual effect for the human eye, but it also performs extremely well in common 

denoising evaluation methods, such as those utilizing the PSNR of an image. 

The traditional BM3D algorithm consists of two stages: the first stage involves basic estimation 

of the noisy image, and the second stage entails further improvement of the denoising performance. 

The basic estimation value from the first stage is used in the second stage of collaborative filtering 

using a prior model. Each phase includes three steps: grouping, collaborative filtering, and 

aggregation. Grouping is performed to find similar blocks and aggregate them into a 

three-dimensional array; collaborative filtering is conducted to three-dimensionally transform the 

formed three-dimensional array and to harden the noise by hard thresholding the coefficients in the 

transform domain. All of the images in the group are obtained by inverse transformation block 

estimates, and then these estimates are returned to their original positions. Finally, aggregation is 

performed to find the final estimate of the real image by determining the weighted average of the 

estimated local blocks that overlap each other. 

The BM3D denoising algorithm is one of the most advanced algorithms, but there are also 

shortcomings. The denoising effect of the algorithm will be improved only when a large number of 

high-quality matching blocks are searched for in the reference block, and the characteristics of 

details such as image edges and textures are not completely accounted for, especially when 

processing edges with high-contrast images. The matching block cannot completely represent the 

details of the image, and the edges of the image will have an edge ringing effect. 
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2.2. AD image denoising algorithm 

The edge information in images increases with the increase in the complexity of the scenes 

being shot. The BM3D algorithm ignores the characteristics of this edge information. We use 

anisotropic diffusion to preprocess the image in order to efficiently preserve image details, such as 

the image texture. The anisotropic diffusion equation is derived from a PDE, which is widely used 

for noise removal, image edge detection, and detail preservation techniques. Three classical 

anisotropic diffusion denoising models based on PDEs are discussed below. 

Because the thermal diffusion equation smooths the edge and flat regions with the same 

intensity, which is not conducive to edge retention, P-M proposed a new AD equation [10]. This 

equation can adaptively change the diffusion coefficient according to the image features, which can 

help preserve the edge information of an image during denoising. The diffusion model can be 

expressed as 
















),()0,,(

])),,(([
t

),,(

0 yxIyxI

ItyxIgdiv
tyxI

 

(1)  

where ),(0 yxI  is the original image and ),,( tyxI  is the filtered image after t iterations. ),,( tyxI  

is the gradient modulus after t iterations; it is an edge detector, and its value is smaller in flat areas and 

larger in edge areas. )(g  is the diffusion coefficient, also known as the ―edge stop function‖, and it 

represents the degree of diffusion. In particular, when )(g  is constant, the diffusion is isotropic. The 

diffusion coefficient is a nonnegative monotonically decreasing function that satisfies [24] 
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In an edge region, where the image gradient varies considerably, the diffusion coefficient 

)g( I can be used to control the image and achieve weaker smoothing, thereby successfully 

protecting the edge. In a flat region, strong smoothing must be achieved for noise removal.  

Perona and Malik constructed the following two classical diffusion coefficients by establishing 

a relationship between the gradient values and diffusion functions: 
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where k is the diffusion threshold coefficient used to distinguish edges from noise. It is related to the 

variance of the noise and is used to balance denoising and preserve edges. It can be preset or changed 
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according to the result of each iteration of the image changes. When kI  , 0)(g I , and 

diffusion is suppressed. When kI  , 1)(g I , and diffusion is strengthened. Therefore, the 

selection of an appropriate value for k is crucial for the diffusion behavior of a pixel. 

By repeatedly iterating the discrete form of the P-M equation to process the image, noise 

removal and edge retention can be more appropriately balanced. The discretized PDE shown in Eq (1) 

can be applied to the image denoising process as follows: 
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where s is the neighborhood space of pixel s, s denotes the coordinates of the pixel, 
tIs  is the 

discrete sample of the current image,   is a constant that controls the overall diffusion intensity, 

and s  is the size of the neighborhood space. ∇  can be expressed by the difference quotient of two 

adjacent pixels in different directions:          

),s()( tt,s IpII p  },,,{s WESNp   (6)  

For each iteration of the P-M model, the gradient values in the four directions around the center 

point are calculated, and the gray value of the original center point is replaced by the calculated 

gradient value, which may induce a loss of image details and false contours. 

The P-M equation not only promotes the practical application of nonlinear diffusion equations, 

but also greatly contributes to the development of PDE methods in the field of image processing. 

However, the P-M model still has many deficiencies, such as strong noise failure and ill-posedness. 

Hence, many modifications have been developed to improve the P-M model. 

One shortcoming of the P-M model is that it fails when noise is strong. Catte et al. [11] 

proposed a regularized P-M model called the Catté P-M model. In the Catté P-M model, Gaussian 

filtering is used to smooth an image and the smoothed gradient mode to replace the gradient mode of 

the original image. The diffusion coefficient of the P-M AD model is calculated to reduce the noise 

gradient value. The optimized model can be expressed as 
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(8)  

where ),,( tyxI  is a noisy image, ),,( tyxI is a Gaussian smoothed image, G  is a Gaussian 

function with variance of σ
2
, and * is a convolutional symbol. The discretized form of the Catté P-M 

model is 
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Catté et al. demonstrated that this model is well-posed and ensures the stability of the diffusion 

process, but the filtering effect will remain poor if the selection of σ is not accurate. 

In 2017, Tebini et al. [25] proposed the following diffusion coefficient function, which 

converges faster and requires less processing time: 
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Tebini et al. discretized the diffusion model as follows: 
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In addition, Tebini et al. demonstrated that the model preserves edges, mitigates staircase effects, 

and preserves details during the diffusion process. 

3. BM3D denoising algorithm based on AD equation 

In view of the ringing caused by the Wiener filtering method used in collaborative filtering of 

the BM3D algorithm, we propose an improved BM3D filtering method based on AD, which 

combines the advantages of AD and BM3D image denoising algorithms to avoid ringing, retaining 

clear edges and complete details.  

 

Figure 1. Flow chart of improved algorithm. 

The flow of the improved algorithm is shown in Figure 1. First, AD filtering is performed on the 

noise. Then, the proposed enhancement operator model is utilized to extract the smooth region and 

edge region of the filtered image. The smooth region is searched horizontally and vertically using the 

traditional BM3D algorithm. The edge region is searched for similar blocks along the vertical and 

edge directions [26], and finally denoised images are obtained through grouping, 3D transform, 
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coefficient shrinking, inverse 3D transform, block estimation, and aggregation. The most significant 

advantage of the method of searching for similar blocks along the edge direction is that the edge can 

be obtained for an image with many similar blocks, thus effectively avoiding edge ringing. 

The BM3D algorithm is divided into two steps: simple denoising to obtain the basic estimate 

through the original image matching and more detailed denoising through the original image and 

basic estimation to improve the PSNR further. 

3.1. AD Model based on edge enhancement operator 

The direction and diffusion coefficient have considerable effects on the image denoising process. 

The P-M algorithm was improved in this study in these two aspects. The main procedures are as 

follows:  

 A 5 × 5 edge enhancement operator template with eight directions was developed to calculate the 

image gradient. This diffusion direction template can highlight the edge information of the 

image better than the traditional P-M model and related improved algorithms. The enhanced 

gradient information is used to calculate the diffusion coefficient, which can enhance the 

preservation of the image edges and protect details.  

 A new diffusion coefficient based on the hyperbolic tangent function was constructed. We prove 

that the function has an improved convergence speed. 

3.1.1. Edge enhancement operator model based on eight-direction diffusion 

The classical P-M diffusion model uses the gradient values in four directions in the 

neighborhood of the pixel to calculate the gray value in the transformation (see Figure 2); it does not 

consider the effect of the gradient in the diagonal region. Thus, Tebini et al. [25] proposed an 

improved eight-neighbor diffusion direction model with four additional directions: northeast (NE), 

northwest (NW), southeast (SE), and southwest (SW) (see Figure 3). The gradient values in the four 

new directions together with those in the previous four directions are used to calculate the 

transformed gray value. 

 

 

Figure 2. Diffusion directions in the P-M model and relationship with neighboring pixels. 

Assuming that the continuous image function is I(x, y), the gradient of I(x, y) at pixel (x, y) is a 

vector  
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In practice, the collected image consists of discrete data in units of pixels, so in digital image 

processing, the differences between adjacent or interval pixels are often used to represent 

information at the edge of the image. Therefore, the gradient calculations for the four neighborhood 

directions of the pixel, I(x, y), can be written as follows: 
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The experimental simulation revealed that although the image edge information detected by the 

3×3 template is rich, some image details are still missed. Meanwhile the image edge detected by the 

5×5 template is more complete, with clear contour and good continuity. To describe the edge points 

of the image more accurately and reduce the influence of noise on the detection results, this paper 

proposes an edge detection template for eight-direction 5×5 enhancement operators. The template is 

depicted in Figure 4. The distance from a location to the center and the direction for the location in 

the template determine the weight of each location in the template. Points of equal distance have the 

same weight.  

As shown in Figure 4, w(x, y) is the weight at each location and can be calculated by using the 

following equations [27]: 

22 )()(),( jyixyxd 
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where d(x, y) is the Euclidean distance from the template element with coordinates (x, y) to the  

center of the template with coordinates (i, j), u is the adjustment coefficient (related to the template 

size), and s(x, y) is the real weight at (x, y). To simplify the calculations, take the integer at s(x, y) to 

be the element in the template. In the formula, [ ] stands for the up integer operation. 

 

 

 

 

 

 

Figure 3. Eight directions of diffusion. 
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(e)              (f)               (g)                (h) 

Figure 4. Enhanced operator templates: (a)-(h) are the 0°, 45°, 90°, 135°, 180°, 225°, 

270°, and 315° direction detection templates, respectively. 

Image I is convoluted with each of the above templates, yielding eight different values for each 

pixel. The eight values are compared, and the maximum value is assigned to the pixel as the new 

grayscale value. The convolution process can be expressed as shown in Eq (17) 

),(Temp),( yxIyxF
dd  

 
(17)  

where ),( yxI  is a Gaussian smoothed image; d = 1, 2, 3, ..., 8; and θ1, θ2, ..., θ8 are the eight 

directions of 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315° respectively. 
d

Temp  is the detection 

template corresponding to a direction. 

3.1.2. Diffusion coefficient function based on hyperbolic tangent function 

The intensity of smoothing in the PDE denoising model is mainly controlled by the diffusion 

coefficient function. The following diffusion function can be constructed: 

))/tanh(1)()/((exp)( 22

4 kIkIIg 
 

(18)  

Compared with the classical diffusion function in the P-M model, this diffusion function has a 

greater diffusion intensity. The value of I  is relatively large in the edge area of an image; 
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therefore, the value of )g( I  is small. That is, the degree of diffusion is weaker, and the edge of 

the image can be protected in this case. In a nonedge area, the value of I  is small; hence, the 

value of )g( I  is large, which is favorable for removing noise in flat areas.  

Based on the above analysis, the AD model can be discretized as 
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where   is a constant that controls the overall diffusion intensity. To ensure iteration stability, the 

value of   ranges from 0 to 0.25. 

Image I is convoluted with each of the above templates, yielding eight different values for each 

pixel. These eight values are compared, and the maximum value is assigned to the pixel as the new 

grayscale value. The gray value information is substituted into the diffusion function g, and then g is 

substituted into the improved discrete AD model to obtain the initial denoising image. 

 

     

 (a)               (b)                (c)               (d) 

   

(e)               (f)               (g)        

Figure 5. (a) Noise image; images denoised using the (b) P-M method, (c) improved 

P-M method of Tebini, and (d) proposed method; (e), (f), and (g) enlarged versions of the 

areas outlined in red in (b), (c), and (d), respectively. 
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Three methods were used to simulate a house image with Gaussian noise (see Figure 5(a)), in 

which the noise variance was 10, the gradient threshold k was set to 50, and the number of iterations 

was set to 5. The experimental results are presented in Figure 5. Figure 5(b) is the denoising image 

processed using the classical P-M model [8]. Figure 5(c) is the denoising image processed by the 

improved P-M model of Tebini [23]. Figure 5(d) is the denoising image processed using the method 

presented in this paper. Figures 5(e), 5(f), and 5(g) are magnified versions of Figures 5(b), 5(c), and 

5(d), respectively. It can be seen from Figure 5 that compared with the traditional P-M diffusion 

model and the improved P-M diffusion model proposed by Tebini, the proposed model retains more 

image details, more complete image edges, clearer contours, and better continuity. Compared with 

the P-M model, the denoising effect is obviously improved. 

3.2. Mathematical analysis of the proposed model 

This section explores the convergence speeds of several diffusion functions. The numerical 

results and graphical calculations verify the speed and effectiveness of denoising with this model.  

Figure 6 displays the decrease in the velocity curve of the proposed function compared to those 

of the P-M model and other recent functions. We compared and analyzed the output functions 

corresponding to the different diffusion functions for the same x value. When x = 40, the magnitudes 

of several diffusion functions correspond to 
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, indicating that the function value of 

the diffusion function g4(x) is the closest to zero, which demonstrates that g4(x) converges faster than 

other models. 

 

 

Figure 6. Contrast graphs of the diffusion function curve: function value points of four 

curves with the same x value. 
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Figure 7. Diffusion function and its tangent. 

The trend in a curve can be described by the slope of the tangent line at a point on the curve, 

namely, the derivative. The slope of the curve reflects the degree of change in the curve at that point. 

Figure 7 shows the curves for the PM model and the diffusion function of the proposed model, where 

line segments T1 and T2 are the respective tangent lines. The equation for the tangent line is 
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Thus, the equation for the tangent line of the diffusion function of the P-M model is 
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The equation for the tangent line of the proposed model is as follows: 

))((')( 442 zxzgzgT   (25)  

According to Eq (18), the slope of the tangent line of the diffusion function of the proposed 

model can be expressed as follows: 
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Therefore, 
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Thus, the equation of the tangent line can be expressed as 
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)('1 zg  and )('4 zg  are the slopes of the tangent lines of the diffusion functions of the P-M 
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and proposed models, respectively. They can be expressed in the form of a difference quotient as 

follows: 
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Thus, 

'' 14 gg   (30)  

According to Eq (30), the slope of the diffusion function of the proposed model is larger than 

that of the P-M model. That is, the variable of the diffusion function g4 changes more rapidly along 

the curve. Thus, the proposed diffusion function converges faster than that in the P-M model. 

4. Experimental results and evaluation 

In this section, we experimentally verify the denoising effect of the BM3D filtering model 

based on the AD equation. To illustrate the performance of the proposed model, images with 

different noise levels were separately tested. The corresponding results were compared with the 

results of existing algorithms.  

4.1. Image quality evaluation criteria 

In the image denoising quality evaluation, we used both objective and subjective evaluation 

methods to evaluate the effectiveness of the treatment more accurately. Two evaluation criteria for 

image quality are defined as shown below. 

We used the PSNR as an evaluation criterion to measure the approximation of the denoised 

image to the original clear image. The PSNR can be calculated using 
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(31)  

where NM   is the size of the image; ),( jiu  and ),(0 jiu  are the pixel values of the original and 

denoised images, respectively, at the corresponding pixel; and L is the range of gray values in the 

image, where L = 255 for 8-bit grayscale images. When the PSNR is larger, the denoised image is 

closer to the original image. 

The second evaluation criterion is the SSIM. The SSIM is an index used to measure the 

similarity between two images [23]. The SSIM is closer to human visual judgment on image quality 

and is given by 
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where 
u  and 

2

u  are the mean and variance of the image, respectively; 
0

covuu  is the covariance 

of u  and 0u ; and 1c  and 2c  are two very small constants used to prevent the denominator from 

being zero. A larger SSIM implies higher image similarity. 

4.2. Experiments with natural images 

To display the visual effect of the denoised image, we firstly added Gaussian white noise with 

zero mean and variance equal to 20 or 30 to the test images (Figures 8(a) and 9(a), respectively), all 

images had a size of 512 × 512. Then we used the proposed method and the existing methods with 

superior performance, such as BM3D algorithms [5], to denoise the noisy images. Figures 8 and 9 

show the corresponding experimental results. The parameters of the proposed anisotropic diffusion 

method for image preprocessing were set as   = 1/7, k = 50, and number of iterations were set as 

10 for the next four experiments. As can be seen, the improved denoising algorithm provides 

significantly improved subjective vision compared with the image denoising result of the BM3D 

algorithm. By enlarging the local information and comparing the results, it can be observed that, by 

using the proposed algorithm, the face of the photographer and the distant buildings in Figure 8(h) 

are clearer than those in Figure 8(g). Ringing is visible at the edges of Figure 9(i), while ringing is 

effectively avoided in Figure 9(j). Furthermore, as shown in Figure 9(h), information such as the ring 

and bracelet on the hand of the man are effectively saved. The algorithm is more efficient at retaining 

the image texture. 

 

 (a)             (b)              (c)               (d)              (e)     

 

 (f)             (g)              (h)               (i)              (j)     

Figure 8. (a) Original image; (b) noise image with variance = 20; image after denoising 

using the (c) P-M method, (d) BM3D method, and (e) proposed method; (f), (g), (h), (i), 

and (j) enlarged portions of (a), (b), (c), (d), and (e), respectively. 
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(a)             (b)              (c)               (d)              (e)   

 

 (f)             (g)              (h)               (i)              (j)     

Figure 9. (a) Original image; (b) noise image with variance = 30; image after denoising 

using the (c) P-M method, (d) BM3D method, and (e) proposed method; (f), (g), (h), (i), 

and (j) enlarged portions of (a), (b), (c), (d), and (e), respectively. 

To verify the generality of the proposed algorithm for image denoising, two more images were 

selected for simulation experiments. Gaussian white noise with zero mean and variance equal to 20 

or 35 was added to the images of a house (512 × 512) and CT (512 × 512) (Figures 10(a) and 11(a), 

respectively). The P-M denoising method, BM3D denoising method, and proposed method were 

used to denoise the test image after adding noise. The experimental results are shown in Figures 10 

and 11. Comparative analysis revealed that the proposed algorithm retains the texture details of the 

images more effectively. 

To confirm the denoising performance of the proposed algorithm, different noises with zero 

mean and variance equal to 10 were selected to perform noise processing on the four 

abovementioned test images. The relevant parameters are set as  = 0.1, k = 50, and number of 

iterations were set as 5. Experiments were performed on the noise-enhanced images using the 

non-local mean, BM3D, and proposed denoising algorithms. The PSNR and SSIM were utilized to 

measure the image denoising effect, and the results are presented in Table 1.  

The time required for the noise image processing by three different algorithms is shown in 

Table 2. To ensure accuracy, each time value measurement is performed by repeated denoising for 

the same noise image 50 times, and their average value is taken. It can be seen from Table 1 that 

compared with the results of the non-local mean algorithm and the three-dimensional block matching 

filtering algorithm, the proposed algorithm has a higher SSIM and PSNR. As can be seen from 

Table 2, the time required by the proposed algorithm to process noisy images is at most 0.2 seconds 

longer than the original BM3D algorithm. 



4985 

Mathematical Biosciences and Engineering  Volume 17, Issue 5, 4970–4989. 

 

 (a)             (b)              (c)               (d)              (e)     

Figure 10. (a) Original image; (b) noise image with variance = 20; image after denoising 

using the (c) P-M method, (d) BM3D method, and (e) proposed method. 

 

 (a)             (b)              (c)               (d)              (e)     

Figure 11. (a) Original image; (b) noise image with variance = 35; image after denoising 

the (c) P-M method, (d) BM3D method, and (e) proposed method. 

Table 1. Comparison of denoising results in terms of PSNR (dB)/SSIM. 

Image  / PSNR NLM BM3D Our method 

PSNR SSIM PSNR SSIM PSNR SSIM 

Cameraman 

(256 × 256) 

10 29.42 0.877 34.18 0.929 37.63 0.969 

20 28.50 0.824 30.48 0.871 34.65 0.945 

30 26.95 0.681 28.64 0.832 32.11 0.916 

40 24.99 0.534 27.93 0.801 30.57 0.891 

House 

(256 × 256) 

10 34.51 0.883 36.36 0.908 36.94 0.901 

20 32.20 0.827 33.45 0.869 34.71 0.884 

30 29.27 0.816 32.09 0.847 32.65 0.854 

40 26.52 0.784 30.75 0.827 31.10 0.833 

Man 

(512 × 512) 

10 31.29 0.921 33.32 0.957 34.79 0.970 

20 29.41 0.879 30.43 0.912 31.11 0.926 

30 27.48 0.831 28.81 0.865 29.28 0.885 

40 25.35 0.765 27.62 0.832 27.97 0.844 

CT 

(512 × 512) 

10 41.85 0.938 45.23 0.961 46.06 0.975 

20 38.51 0.907 41.11 0.931 42.07 0.949 

30 29.99 0.526 38.14 0.897 39.47 0.914 

40 26.25 0.349 37.20 0.875 37.77 0.907 
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Table 2. Comparison of running time of different denoising algorithms. 

Image   Time(s) 

NLM BM3D Our method 

Cameraman 

(256 × 256) 

10 64.31 0.98 1.08 

20 65.63 1.09 1.14 

30 66.73 1.12 1.20 

40 68.35 1.09 1.20 

House 

(256 × 256) 

10 71.56 1.03 1.07 

20 71.86 1.09 1.16 

30 72.69 1.14 1.20 

40 74.07 1.12 1.24 

Man 

(512 × 512) 

10 262.28 2.81 2.95 

20 263.89 2.95 3.15 

30 264.17 3.21 3.27 

40 266.03 3.10 3.17 

CT 

(512 × 512) 

10 267.86 3.15 3.21 

20 267.90 3.17 3.29 

30 268.42 3.20 3.25 

40 269.87 3.12 3.21 

To reflect the superiority of the new algorithm more intuitively, we set the abovementioned 

cameraman, man, and house images to a mean of 0 and noise deviation in increments of 10, using the 

BM3D filtering and proposed algorithms. The changes in the PSNR and SSIM with application of 

the two denoising models are depicted as the noise level changes, as shown in Figures 13 and 14, 

respectively. The triangles represent the BM3D denoising algorithm, and the dots represent the 

proposed algorithm. This figure shows intuitively that the proposed method has a better denoising 

effect. 

 

Figure 13. PSNR after denoising using different algorithms. 
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Figure 14. SSIM after denoising using different algorithms. 

5. Conclusion 

This paper proposed an improved BM3D denoising algorithm. In this approach, AD filtering is 

firstly performed on the noisy image; then, similar blocks are searched for in the vertical and edge 

directions to implement denoising. Finally, the denoised image is obtained. This paper also presented a 

new AD model for noise reduction and edge preservation. The restored image was obtained for visual 

evaluation. It is evident that the improved method avoids the edge ringing produced by the traditional 

denoising methods. In addition, the values of the two objective evaluation criteria—the PSNR and 

SSIM—showed that the proposed model performs better than BM3D methods, demonstrating that the 

proposed method is superior in terms of noise removal and edge and detail preservation.  

However, the improved method also increases the time complexity while improving the 

denoising performance. Therefore, investigations to improve the denoising performance and 

denoising efficiency will be the focuses of future research. In addition, the model was evaluated 

using images with Gaussian noise, and images with other types of noise were not used. Furthermore, 

the theory only focuses on images. Therefore, in the future, we plan to address the time complexity, 

improve the denoising performance of the algorithm further, and explore the application of AD to 

video processing.  
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