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Abstract: Dynamics of non-autonomous Mackey-Glass model have not been well documented yet in
two variable delays case, which is proposed by Berezansky and Braverman as open problems. This
manuscript considers attractivity of all non-oscillating solutions about the positive equilibrium point
and the global asymptotical stability of the trivial equilibrium point. Two delay-independent criteria
based on the fluctuation lemma and techniques of differential inequality are established. The obtained
results improve and complement some published results. Meanwhile, computer simulations of two
numerical examples are arranged to illustrate the correctness and effectiveness of the presented results.
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1. Introduction

The complex characterization of delay dynamic model has been the hot topic in diverse
applications of physics, mathematical biology, economic finance and networks systems, etc. [1–14].
As early as 1977, for the sake of investigating the regulation and control mechanisms of human
diseases, Mackey and Glass [15] put forward the following famous delay differential equation:

dP(t)
dt

= −γP(t) +
β0θ

nP(t − τ)
θn + Pn(t − τ)

(1.1)

to describe hematopoiesis with a single-humped production rate, which is now called as Mackey-Glass
model. Biologically, P(t) is the density of mature circulating cells, n > 0, γ, β0, θ are positive constants
and denote the destruction rate, maximal production rate, shape parameter respectively, τ represents
the time delay from immature to mature cells produced by bone marrow in the circulations. The
simple mathematical model of physiological system (1.1) can reproduce certain qualitative features
of normal and abnormal respiration, and the existence of positive solutions, bifurcation, permanence,
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boundedness, oscillation, and local stability of such equation and similar models have greatly attracted
the attention of both theoretical and empirical communities (for example [16–21]).

In order to analyze the effects of maturity time and incubation time on system dynamics,
system (1.1) was generalized to the following nonautonomous delay differential equation form [20]

dx(t)
dt

= β(t)
[ ax(t − h(t))
1 + xν(t − g(t))

− x(t)
]
, a > 0, ν > 0, t ≥ t0, (1.2)

in which g(t) represents the developmental or maturation time, h(t) represents the incubation time. It
should be assumed that β, g, h : [t0, +∞)→ (0, +∞) are continuous functions with

0 < β− = inf
t∈[t0, +∞)

β(t) ≤ sup
t∈[t0, +∞)

β(t) = β+ < +∞, (1.3)

and

τ := max{τ1, τ2} ≥ r := min{r1, r2} > 0, (1.4)

where

τ1 = sup
t∈[t0, +∞)

h(t), τ2 = sup
t∈[t0, +∞)

g(t),

r1 = inf
t∈[t0, +∞)

h(t), r2 = inf
t∈[t0, +∞)

g(t).

Just as shown in [20], the introduction of two different time delays (g(t) and h(t)) in the model shows
more complex dynamic behavior than the previous single delay (τ). For instance, practical examples
with two delays instead of single delay can produce sustained oscillations or even chaotic
phenomenon [22–29]. Dynamics on the famous Mackey-Glass model have not been further explored
yet in two variable delays case, which was first proposed by Berezansky and Braverman as open
problems [20]. In fact, when two delays occur in system (1.2), the delayed feedback function can only
be treated as a binary function, which brings many essential research difficulties. Up to now, the
investigation on the global stability of the model (1.2) is still a challenging open problem, and the
research results are very rare, we only find [20] in the existing work, however, the authors of [20]
assume that a > 1 and put some additional technical conditions on the delay terms. More precisely,
one of the main results of [20] is established as follows.

Theorem 1.1 (see Theorem 2.1 in [20]) Suppose that a > 1,
∫ ∞

0
β(t)dt = +∞, and x(t) is a positive

global solution of system (1.2). Then system (1.2) has the unique positive equilibrium N∗ = (a − 1)
1
ν .

Moreover,

(i) x(t) > N∗, t ≥ t0, implies N∗ = lim inf
t→∞

x(t);
(ii) x(t) ∈ (0,N∗), t ≥ t0 yields that N∗ = lim sup

t→∞
x(t).

Now, a natural question is: whether the non-oscillatory solutions mentioned in Theorem 1.1 converge
to N∗. Sparked by the above reason and discussion, we try to give a satisfying answer and establish the
global asymptotical stability of the Mackey-Glass model (1.2) with two different delays h . g, a > 1
or 0 < a ≤ 1.
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The rest of the proposed work is furnished as follows: In section 2, some necessary symbols and
preliminary results are introduced. Two delay-independent criteria based on the fluctuation lemma
and techniques of differential inequality are established in section 3. One numerical example and its
computer simulations are provided to illustrate the effectiveness of the acquired results in section 4. At
last, section 5 contains conclusions.

2. Preliminary results

Before stating our results, we present some symbols. Let C = C([−τ, 0],R) be the Banach space
of the set of all continuous functions from [−τ, 0] to R equipped with the supremun norm || · || and
C+ = {ϕ ∈ C| ϕ(θ) ≥ 0 for θ ∈ [−τ, 0]}. Define xt ∈ C by xt(θ) = x(t + θ) for θ ∈ [−τ, 0], where
x is a continuous function defined on [−τ, σ) with 0 ≤ t < σ. The initial condition with respect to
system (1.2) is as below

xt0 = ϕ, ϕ ∈ C+. (2.1)

Lemma 2.1. For ϕ ∈ C+, the solution of system (1.2) with respect to ϕ can be denoted by x(t; t0, ϕ),
then x(t; t0, ϕ) is nonnegative, unique and exists on [t0, +∞). Moreover, for ϕ ∈ C+ and ϕ(0) > 0,
x(t; t0, ϕ) > 0 for all t ∈ [t0, +∞).

Proof. By using the method of step by step, one can show that x(t) = x(t; t0, ϕ) is unique and exists
on [t0, +∞). As ϕ ∈ C+, according to systems (1.2) and (1.4), we obtain

x(t) = ϕ(0)e−
∫ t

t0
β(v)dv

+e−
∫ t

t0
β(v)dv
∫ t

t0
β(s)

aϕ(s − h(s) − t0)
1 + ϕν(s − g(s) − t0)

e
∫ s

t0
β(v)dvds

≥ 0, t ∈ [t0, t0 + r].

By the method of steps, we have x(t) ≥ 0 on [t0+r, t0+2r], [t0+2r, t0+3r] · · · , [t0+nr, t0+(n+1)r], · · · .
Thus, x(t) ≥ 0 for all t ≥ t0.

Moreover, if ϕ ∈ C+ and ϕ(0) > 0, then

x(t) ≥ ϕ(0)e−
∫ t

t0
β(v)dv

+ ae−
∫ t

t0
β(v)dv
∫ t

t0
β(s)

x(s − h(s))
1 + xν(s − g(s))

e
∫ s

t0
β(v)dvds > 0,

for all t ∈ [t0, +∞). This ends the proof.
Lemma 2.2. Let 0 < a ≤ 1 and x(t) = x(t; t0, ϕ), if ϕ ∈ C+, then for all t ∈ [t0, +∞), we have

x(t) ≤ ‖ϕ‖.
Proof. For ϕ ∈ C+, we state that x(t) = x(t;ϕ) ≤ ‖ϕ‖ for all t ∈ [t0, t0 + r]. Otherwise, there is

t1 ∈ (t0, t0 + r] obeying

x′(t1) > 0, x(t1) > ‖ϕ‖, x(s) ≤ ‖ϕ‖, s ∈ [t0, t1). (2.2)

Furthermore, systems (1.2) and (2.2) lead to

0 < x′(t1)
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= β(t1)[
ax(t1 − h(t1))

1 + xν(t1 − g(t1))
− x(t1)]

< β(t1)[ax(t1 − h(t1)) − ‖ϕ‖]
≤ β(t1)(a − 1)‖ϕ‖
≤ 0.

This is a clear contradiction and reveals the above statement. Then, x(t) ≤ ‖ϕ‖ holds on [t0, +∞) by
induction. The proof of Lemma 2.2 is now completed.

Remark 2.1. Suppose that 0 < a ≤ 1 is satisfied. For any ε > 0, we can choose δ̃ ∈ [0, ε). Then,
for any ϕ ∈ C+ with ‖ϕ‖ < δ̃, from Lemma 2.2, we can show that

x(t) = x(t; t0, ϕ) ≤ ‖ϕ‖ < δ̃ < ε for all t ∈ [t0, +∞).

This suggests that 0 is locally stable for Eq (1.2) with 0 < a ≤ 1.

3. Main results

First, we establish two delay-independent criteria to show the attractivity of all non-oscillating
solutions about the positive equilibrium point.

Theorem 3.1. Let a > 1, x(t) = x(t; t0, ϕ) with ϕ ∈ C+ and ϕ(0) > 0, and there exists T1 > t0 such
that x(t) ≤ N∗ for all t ≥ T1. Then lim

t→+∞
x(t) = N∗.

Proof. From Lemma 2.1, it is obvious that 0 < x(t) ≤ N∗ for all t ≥ T1 + τ. We claim that
l := lim inf

t→+∞
x(t) > 0. Otherwise, by the definition of l, we have l = 0. For each t ≥ T1 + τ, we define

m(t) = min{ξ ∈ [T1 + τ, t] : x(ξ) = min
T1+τ≤s≤t

x(s)}.

It follows from l = 0 that lim
t→+∞

m(t) = +∞, lim
t→+∞

x(m(t)) = 0, and

0 ≥ x′(m(t)), x(m(t) − h(m(t))) > x(m(t)) > 0, for all m(t) > T1 + 2τ,

which, together with (1.2), implies that

0 ≥ x′(m(t))

= β(m(t))
[ ax(m(t) − h(m(t)))
1 + xν(m(t) − g(m(t)))

− x(m(t))
]

> β(m(t))x(m(t))
[ a
1 + (N∗)ν

− 1
]

= 0, where m(t) > T1 + 2τ.

This is a contradiction and suggests that l > 0.
By the fluctuation lemma (see Lemma A.1 in [30]), one can pick a sequence {tk}k≥1 agreeing with

tk → +∞, x(tk)→ lim inf
t→+∞

x(t) = l, x′(tk)→ 0 as k → +∞.
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From the boundedness on β(·), we can select a subsequence of {β(tk)}k≥1, still denoted by {β(tk)}k≥1,
such that lim

k→+∞
β(tk) exists and lim

k→+∞
β(tk) ≥ β− > 0. This follows that

0 = lim
k→+∞

x′(tk)

= lim
k→+∞

β(tk) lim
k→+∞

[ ax(tk − h(tk))
1 + xν(tk − g(tk))

− x(tk)
]

≥ l
[ a
1 + (lim sup

k→+∞

x(tk − g(tk)))ν
− 1
]

lim
k→+∞

β(tk)

and then lim sup
k→+∞

x(tk − g(tk)) = N∗, which, implies that lim sup
t→+∞

x(t) = N∗ since lim sup
t→+∞

x(t) ≤ N∗.

For any ε ∈ (0, lim inf
t→+∞

x(t)), we select T̃ > T1 + 2τ, such that for all t ≥ T̃ , we have

x(t) > lim inf
t→+∞

x(t) − ε.

Consequently, for all t ≥ T̃ + τ, one have

(x(t)e
∫ t

t0
β(v)dv)′ = e

∫ t
t0
β(v)dv[x′(t) + β(t)x(t)

]
= e

∫ t
t0
β(v)dv aβ(t)x(t−h(t))

1+xν(t−g(t))

> e
∫ t

t0
β(v)dvaβ(t)

[
lim inf

t→+∞
x(t) − ε

]
1

1+(N∗)ν

= e
∫ t

t0
β(v)dv

β(t)
[

lim inf
t→+∞

x(t) − ε
]
.

(3.1)

Take k0 > 0 satisfying k0τ1 ≥ T̃ + τ for all k ≥ k0. Given a positive integer k ≥ k0, we denote

x(S k) = max
t∈[kτ1,(k+1)τ1]

x(t), x(sk) = min
t∈[kτ1,(k+1)τ1]

x(t), where sk, S k ∈ [kτ1, (k + 1)τ1].

Now, we state that {x(sk)}k≥k0 is nondecreasing. Suppose the contrary and choose a positive integer
n0 ≥ k0 with x(sn0) > x(sn0+1). Then, sn0+1 ∈ ((n0 + 1)τ1, (n0 + 2)τ1], and there is s∗ = inf{ω ∈
((n0 + 1)τ1, (n0 + 2)τ1] : x(ω) = x(sn0+1)} agreeing with

x′(s∗) ≤ 0, and x(s∗) < x(t) for all t ∈ [n0τ1, s∗).

Subsequently, system (1.2) gives us that

0 ≥ x′(s∗) = β(s∗)[ ax(s∗−h(s∗))
1+xν(s∗−g(s∗)) − x(s∗)]

> β(s∗)[x(s∗)( a
1+(N∗)ν − 1)] = 0,

(3.2)

is a contradiction. This validates the above statement, which implies that

lim
k→+∞

x(sk) = lim inf
t→+∞

x(t). (3.3)

Take a subsequence {k j} j≥1 of {k}k≥k0 such that

lim
j→+∞

x(S k j) = lim sup
t→+∞

x(t) = N∗. (3.4)
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With the aid of the boundedness of {
∫ S k

sk+1
β(v)dv}k≥k0 , we can select its subsequence, still labeled by

{
∫ S k

sk+1
β(v)dv}k≥k0 , such that lim

j→+∞

∫ S k j

sk j+1
β(v)dv exists and

lim
j→+∞

∫ S k j

sk j+1
β(v)dv = τ∗ ∈ [−2τ1β

+, 0]. (3.5)

With the help of an integration of system (3.1) on [S k j , sk j+1], we see that

x(sk j+1)e
∫ sk j+1

t0
β(v)dv

≥ x(S k j)e
∫ S k j

t0
β(v)dv

+[lim inf
t→+∞

x(t) − ε]
∫ sk j+1

S k j

e
∫ t

t0
β(v)dv

β(t)dt

= x(S k j)e
∫ S k j

t0
β(v)dv

+ [lim inf
t→+∞

x(t) − ε](e
∫ sk j+1

t0
β(v)dv

− e
∫ S k j

t0
β(v)dv)

and

x(sk j+1) ≥ x(S k j)e
∫ S k j

sk j+1 β(v)dv
+ [lim inf

t→+∞
x(t) − ε][1 − e

∫ S k j
sk j+1 β(v)dv

]. (3.6)

According to Eqs (3.3)–(3.5) and inequality (3.6), setting j→ +∞ produces

lim inf
t→+∞

x(t) ≥ N∗eτ
∗

+ [lim inf
t→+∞

x(t) − ε][1 − eτ
∗

].

It follows from the arbitrariness of ε that lim inf
t→+∞

x(t) = N∗, and proves Theorem 3.1.
Theorem 3.2. Let a > 1, x(t) = x(t; t0, ϕ) with ϕ ∈ C+, and there exists T2 > t0 such that x(t) ≥

N∗ for all t ≥ T2. Then lim
t→+∞

x(t) = N∗.
Proof. We state that lim sup

t→+∞

x(t) < +∞. Otherwise, lim sup
t→+∞

x(t) = +∞. For each t ≥ T2 + τ, we label

M̃(t) = min{ξ ∈ [T2 + τ, t] : x(ξ) = max
T2+τ≤s≤t

x(s)}.

It follows from lim sup
t→+∞

x(t) = +∞ that lim
t→+∞

M̃(t) = +∞, lim
t→+∞

x(M̃(t)) = +∞, and

x(M̃(t)) > x(M̃(t) − h(M̃(t))), for all M̃(t) > T2 + 2τ.

According to the definition of M̃(t), we know that

0 ≤ x′(M̃(t))

= β(M̃(t))
[ ax(M̃(t) − h(M̃(t)))

1 + xν(M̃(t) − g(M̃(t)))
− x(M̃(t))

]
< β(M̃(t))x(M̃(t))(

a
1 + (N∗)ν

− 1)

= 0, where M̃(t) > T2 + 2τ.
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This is a contradiction and suggests that lim sup
t→+∞

x(t) < +∞. Using the fluctuation lemma (see

Lemma A.1 in [30]), and considering the boundedness of β(t), one can find a sequence {t∗k}k≥1 obeying
that

t∗k → +∞, x(t∗k)→ lim sup
t→+∞

x(t) = L, x′(t∗k)→ 0 as k → +∞,

and lim
k→+∞

β(t∗k) ≥ β− > 0. This entails that

0 = lim
k→+∞

x′(t∗k)

= lim
k→+∞

β(t∗k) lim
k→+∞

[ ax(t∗k − h(t∗k)))
1 + xν(t∗k − g(t∗k)

− x(t∗k)
]

≤ lim
k→+∞

β(t∗k)L
[ a
1 + (lim inf

k→+∞
x(t∗k − g(t∗k)))ν

− 1
]

and then lim inf
k→+∞

x(t∗k − g(t∗k)) = N∗. This and the fact that lim inf
t→+∞

x(t) ≥ N∗ produce lim inf
t→+∞

x(t) = N∗.

For any ε > 0, one can pick T̃1 > T2 agreeing with

x(t) < lim sup
t→+∞

x(t) + ε for all t ≥ T̃1.

Furthermore, for all t ≥ T̃1 + τ, we gain

(x(t)e
∫ t

t0
β(v)dv)′ = e

∫ t
t0
β(v)dv[x′(t) + β(t)x(t)

]
= e

∫ t
t0
β(v)dv

β(t) ax(t−h(t))
1+xν(t−g(t))

< e
∫ t

t0
β(v)dv

β(t) a
1+(N∗)ν

[
lim sup

t→+∞

x(t) + ε
]

= e
∫ t

t0
β(v)dv

β(t)
[

lim sup
t→+∞

x(t) + ε
]
.

(3.7)

Set k∗0 > 0 with k∗0τ1 ≥ T̃1 + τ for all k ≥ k∗0. Given a positive integer k obeying k ≥ k∗0, we denote

x(S ∗k) = max
t∈[kτ1,(k+1)τ1]

x(t), x(s∗k) = min
t∈[kτ1,(k+1)τ1]

x(t),

where s∗k, S ∗k ∈ [kτ1, (k + 1)τ1]. Hereafter, we assert that {x(S ∗k)}k≥k∗0
is non-increasing. Suppose

that, on the contrary, there is a positive integer n∗0 ≥ k∗0 obeying x(S ∗n∗0) < x(S ∗n∗0+1). Then, S n∗0+1 ∈

((n∗0 +1)τ1, (n∗0 +2)τ1], and we can find S ∗ = inf{ω ∈ ((n∗0 +1)τ1, (n∗0 +2)τ1] : x(ω) = x(S ∗n∗0+1)} agreeing
with

x′(S ∗) ≥ 0, and x(S ∗) > x(t) for all t ∈ [n∗0τ1, S ∗).

It follows from system (1.2) that

0 ≤ x′(S ∗) = β(S ∗)[ ax(S ∗−h(S ∗))
1+xν(S ∗−g(S ∗)) − x(S ∗)]

< β(S ∗)x(S ∗)( a
1+(N∗)ν − 1) = 0,

(3.8)

which is a contradiction. This furnishes the above assertion and results that

lim
k→+∞

x(S ∗k) = lim sup
t→+∞

x(t). (3.9)
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Now, from the definition of {s∗k}k≥k∗0
and the boundedness of {

∫ s∗k
S ∗k+1

β(v)dv}k≥k∗0
, we can pick a

subsequence {k j} j≥1 of {k}k≥k∗0
such that

lim
j→+∞

x(s∗k j
) = lim inf

t→+∞
x(t) = N∗, (3.10)

and

lim
j→+∞

∫ s∗k j

S ∗k j+1
β(v)dv = τ∗∗ ∈ [−2τ1β

+, 0]. (3.11)

Computing the integration of (3.7) on [s∗k j
, S ∗k j+1] yields

x(S ∗k j+1)e
∫ S ∗k j+1

t0
β(v)dv

≤ x(s∗k j
)e
∫ s∗k j

t0
β(v)dv

+[lim sup
t→+∞

x(t) + ε]
∫ S ∗k j+1

s∗k j

e
∫ t

t0
β(v)dv

β(t)dt

= x(s∗k j
)e
∫ s∗k j

t0
β(v)dv

+ [lim sup
t→+∞

x(t) + ε](e
∫ S ∗k j+1

t0
β(v)dv

− e
∫ s∗k j

t0
β(v)dv)

and

x(S ∗k j+1) < x(s∗k j
)e

∫ s∗k j
S ∗k j+1

β(v)dv

+
[

lim sup
t→+∞

x(t) + ε
][

1 − e

∫ s∗k j
S ∗k j+1

β(v)dv]
.

(3.12)

In view of (3.9), (3.10), (3.11) and (3.12), we gain

lim sup
t→+∞

x(t) ≤ N∗eτ
∗∗

+ [lim sup
t→+∞

x(t) + ε][1 − eτ
∗∗

],

which produces that lim sup
t→+∞

x(t) = N∗ and reveals Theorem 3.2.

Next, we establish the global asymptotical stability on the zero equilibrium point. More precisely,
Theorem 3.3. If 0 < a ≤ 1, then for system (1.2), the trivial solution 0 is globally asymptotically

stable with respect to C+.
Proof. From Lemma 2.2 and Remark 2.1, it is obvious that x(t) = x(t; t0, ϕ) with ϕ ∈ C+ is bounded,

and 0 is a local stable. In order to prove Theorem 3.3, it is sufficient to show that lim sup
t→+∞

x(t) = 0.

Suppose the contrary and let

lim sup
t→+∞

x(t) = L > 0. (3.13)

Using the fluctuation lemma (see Lemma A.1 in [30]), and considering the boundedness of β(t), one
can find a sequence {T ∗k }k≥1 with

T ∗k → +∞, x(T ∗k )→ lim sup
t→+∞

x(t) = L, x′(T ∗k )→ 0 as k → +∞,
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and lim
k→+∞

β(T ∗k ) ≥ β− > 0. This leads to

0 = lim
k→+∞

x′(T ∗k )

= lim
k→+∞

β(T ∗k ) lim
k→+∞

[ ax(T ∗k − h(T ∗k )))
1 + xν(T ∗k − g(T ∗k )

− x(T ∗k )
]

≤ lim
k→+∞

β(T ∗k )L
[ a
1 + (lim inf

k→+∞
x(T ∗k − g(T ∗k )))ν

− 1
]

and then
lim inf

k→+∞
x(T ∗k − g(T ∗k )) = 0 = lim inf

t→+∞
x(t).

Given ε > 0, we can take T̂ > t0 + τ agreeing with

x(t) < L + ε for all t ≥ T̂ .

Then, 0 < a ≤ 1 produces

(x(t)e
∫ t

t0
β(v)dv)′ = e

∫ t
t0
β(v)dv[x′(t) + β(t)x(t)]

= e
∫ t

t0
β(v)dv

β(t) ax(t−h(t))
1+xν(t−g(t))

≤ e
∫ t

t0
β(v)dv

β(t)(L + ε), for all t ≥ T̂ + τ.

(3.14)

Choose k∗∗0 > 0 satisfying k∗0τ1 ≥ T̂ + τ for all k ≥ k∗∗0 , for k ≥ k∗∗0 , we denote

x(Qk) = max
t∈[kτ1,(k+1)τ1]

x(t), x(qk) = min
t∈[kτ1,(k+1)τ1]

x(t),

where qk, Qk ∈ [kτ1, (k + 1)τ1]. Furthermore, we state that {x(Qk)}k≥k∗0
is non-increasing. If the

statement is not true, then we can choose a positive integer n∗∗0 ≥ k∗∗0 , such that x(Qn∗∗0
) < x(Qn∗∗0 +1).

Consequently, we get Qn∗∗0 +1 ∈ ((n∗∗0 +1)τ1, (n∗∗0 +2)τ1], and there exists Q∗ = inf{ω ∈ ((n∗∗0 +1)τ1, (n∗∗0 +

2)τ1] : x(Qn∗∗0 +1) = x(ω)} satisfying

x′(Q∗) ≥ 0, and x(Q∗) > x(t) for all t ∈ [n0τ1, Q∗).

However, system (1.2) entails that

0 ≤ x′(Q∗) = β(Q∗)
[

ax(Q∗−h(Q∗))
1+xν(Q∗−g(Q∗)) − x(Q∗)

]
< β(Q∗)x(Q∗)(a

1 − 1) ≤ 0,
(3.15)

which is a contradiction. This results the above statement and implies that

lim
k→+∞

x(Qk) = L. (3.16)

Now, making use of the definition of {qk}k≥k∗∗0
and by employing the boundedness of {e

∫ qk
Qk+1

β(v)dv
}k≥k∗∗0

, it
is easy to see that there is a subsequence {k j} j≥1 of {k}k≥k∗∗0

such that

lim
j→+∞

x(qk j) = lim inf
t→+∞

x(t) = 0,

lim
j→+∞

e
∫ qk j

Qk j+1
β(v)dv

= Q∗∗ ∈ [−2τ1β
+, 0].

(3.17)
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From inequality (3.14), we obtain

x(Qk j+1)e
∫ Qk j+1

t0
β(v)dv

≤ x(qk j)e
∫ qk j

t0
β(v)dv

+ (L + ε)
∫ Qk j+1

qk j

e
∫ t

t0
β(v)dv

β(t)dt

= x(qk j)e
∫ qk j

t0
β(v)dv

+ (L + ε)(e
∫ Qk j+1

t0
β(v)dv

− e
∫ qk j

t0
β(v)dv),

and

x(Qk j+1) < x(qk j)e
∫ qk j

Qk j+1
β(v)dv

+ (L + ε)
[
1 − e

∫ qk j
Qk j+1

β(v)dv]
. (3.18)

With the aid of Eqs (3.16) and (3.17) and inequality (3.18), setting j→ +∞ yields

L ≤ (L + ε)(1 − eQ∗∗),

which entails that lim sup
t→+∞

x(t) = L = 0. This contradicts Eq (3.13) and proves Theorem 3.3.

Remark 3.1. Clearly, under assumption (1.4), all results in Theorem 1.1 are special ones of
Theorems 3.1 and 3.2 in this present paper. In particular, we can show that the two different
time-varying delays h(t) and g(t) do not yield the effect on the asymptotic behavior on the
non-oscillating solutions about the positive equilibrium point of Mackey-Glass equation. Also,
Theorem 3.3 implies that, for 0 < a ≤ 1, the global stability of non-autonomous Mackey-Glass
equation is independent of the two different time-varying delays h(t) and g(t).

4. Numerical examples

In this section, we present two examples with graphical illustration to show the theoretical findings
in this paper. Consider the following delay Mackey-Glass equations:

x′(t) = (10 + sin t)
[

28x(t−(10+cos t))
1+x3(t−(30+cos 2t)) − x(t)

]
, t ≥ t0 = 0, (4.1)

and

x′(t) = e2 sin 3t
[

x(t−(10+cos t))
1+x3(t−(30+cos 2t)) − x(t)

]
, t ≥ t0 = 0. (4.2)

From Theorems 3.1 and 3.2, one can see that all non-oscillating solutions about the positive equilibrium
point N∗ = 3 of Eq (4.1) are convergent to N∗. Moreover, Theorem 3.3 suggests that Eq (4.2) is
globally asymptotically stable. Computer simulations of the two numerical examples are arranged in
Figures 1 and 2 to illustrate the correctness and effectiveness of the presented convergence results.

Remark 4.1. We should point out that the delay-independent criteria for the asymptotic behavior
of the non-autonomous Mackey-Glass equation with two different delays have not been established in
the previous literature. Most recently, the authors in [31] used the classical approach of “decomposing
+ embedding” to investigate the global attraction for the autonomous equation

x′(t) = βx(t) + βF(x(t − σ), x(t − τ)),
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in the case that β, σ, τ ∈ [0, +∞) are constants and σ ≤ τ. On the other hand, I. Győri, et al. [32]
studied the permanence of the below system

x′(t) = α(t)H(x(t − σ), x(t − τ)) − β(t) f (x(t)).

Obviously, all results in [17–20, 31–34] cannot be applicable to show convergence of the solutions of
Eqs (4.1) and (4.2).
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Figure 1. Numerical solutions of Eq (4.1).
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Figure 2. Numerical solutions of Eq (4.2).

5. Conclusions

In this paper, we mainly investigate the attractivity and the global asymptotical stability for a class
of non-autonomous Mackey-Glass model with two variable delays. Firstly, in the case of a unique
positive equilibrium point, we prove that two different variable delays appearing in Mackey-Glass
equation do not yield the effect on the asymptotic behavior of the non-oscillating solutions about the
positive equilibrium point. Then two delay-independent criteria based on the fluctuation lemma and
techniques of differential inequality are established. The obtained results improve and complement
some published results, and partly answer the open problem proposed by Berezansky and
Braverman [20]. By the way, the approach proposed in this article furnishes a possible method for
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studying the asymptotic behavior on the other population dynamic models involving the different
reproductive function delays.
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