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Abstract: In this paper, a mathematical model for microbial treatment in livestock and poultry sewage
is proposed and analyzed. We consider periodic addition of microbial flocculants to treat microorgan-
isms such as Escherichia coli in sewage. Different from the traditional models, a class of composite
dynamics models composed of impulsive differential equations is established. Our aim is to study the
relationship between substrate, microorganisms and flocculants in sewage systems as well as the treat-
ment strategies of microorganisms. Precisely, we first show the process of mathematical modeling by
using impulsive differential equations. Then by using the theory of impulsive differential equations,
the dynamics of the model is investigated. Our results show that the system has a microorganisms-
extinction periodic solution which is globally asymptotically stable when a certain threshold value is
less than one, and the system is permanent when a certain threshold value is greater than one. Fur-
thermore, the control strategy for microorganisms treatment is discussed. Finally, some numerical
simulations are carried out to illustrate the theoretical results.

Keywords: sewage treatment; control strategy; impulsive differential equation; globally asymptotical
stability; permanence

1. Introduction and model formulation

With the improvement of people’s living standards, people’s demand for food, especially various
meat product is growing. According to the statistics of the US Department of Agriculture, in 2014, the
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per capita consumption of red meat and chicken reached 100.4 pounds and 83.8 pounds, respectively.
In 2015, these indicators reached 104.2 pounds and 89.3 pounds respectively, and these indicators in-
creased year by year, by 2017, these indicators reached 108.2 pounds and 92.1 pounds respectively,
compared with 2014, the growth rate has reached 7.7% and 9.9% respectively [1, 2]. People’s depen-
dence on meat food has stimulated the prosperity of the global livestock and poultry industry, which
has spawned farms of different sizes. However, livestock and poultry farms produce a large amount
of sewage every day. This sewage mainly include livestock and poultry urine and feces, feed residues,
washing water and sewage generated by workers’ production [3, 4]. Moreover, the sewage contains
lots of pathogens, such as Escherichia coli, Enterococcus, Ascaris eggs and so on. The indiscriminate
discharge and treatment of aquaculture sewage have caused serious environmental pollution [5,6]. The
pollution caused by livestock and poultry farming has become the third largest source of pollution after
industrial pollution and domestic pollution. Therefore, how to treat sewage from livestock and poultry
farming effectively has become an important issue in sewage treatment.

Many environmental protection experts and scholars have conducted in-depth research and got
many excellent results [7–10]. Numerous studies have shown that microbial flocculants can floccu-
late bacteria such as Escherichia coli and yeast through various mechanisms of action such as adsorp-
tion bridging [11], electrical neutralization [12], and chemical reaction [13], which makes it possible
to remove microorganisms by adding microbial flocculation to sewage [14]. The earliest flocculant-
producing bacteria were screened from activated sludge by Butterfield [15]. In 1976, Nakamura J et
al. screened microorganisms with flocculation ability from molds, bacteria, actinomycete, etc., among
which the flocculation effect produced by Aspergillus sojae was the best, thus opening up the up-
surge of microbial flocculants [16]. In 1985, Takagi H et al. studied the flocculant PF101 produced
by the pseudomycin penicillin microorganism. PF101 has good flocculation effect on Bacillus sub-
tilis, Escherichia coli, brewer’s yeast, activated sludge, etc. [17]. In 1986, Kurane et al. developed a
bioflocculant NOC-1 using Rhodococcus erythropolis, which has excellent flocculation and the decol-
orization effect for E. coli, yeast, muddy water, river water, fly ash water, expanded sludge, and pulp
sewage which is the best microbial flocculating floc found at present [18]. With the development of
microbial flocculants, new flocculants have emerged in recent years. In [19], Salehizadeh et al. stud-
ied the flocculant produced by Pasteurella and used the flocculant to flocculate dye wastewater and
yeast wastewater well. Zhang et al. [20] studied the characteristics of high flocculating active micro-
bial flocculant TJ-F1 produced by Proteus mirabilis and its flocculation mechanism. Recently, Song
et al. proposed some models describing biodegradation of Microcystins [21–23]. Guo et al. [24, 25]
considered two delayed microorganism flocculation models with different functional responses.

Previous work on general livestock and poultry sewage treatment process [24, 25] motivated us in
considering addition of a suitable microbial flocculant to eliminate microorganisms in the supernatant
after the second precipitation (Figure 1). We try to establish some mathematical models to describe the
kinetics of the treatment of microorganisms in sewage by using microbial flocculants.

First, we give the classical chemostat model, in which a population of microorganisms depend on a
single growth limiting substrate, the two-dimensional system can be formulated as follows

dS (t)
dt

= D(S 0 − S (t)) −
µmS (t)x(t)
δ(Km + S (t))

,

dX(t)
dt

=
µmS (t)X(t)
Km + S (t)

− DX(t),
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where S (t), X(t) stand for the concentration of substrate, microorganisms in sewage at time t, respec-
tively. D is the dilution rate, µm and δ represent the maximum growth rate and a growth yield constant,
respectively. Km represents the half-saturation constant. S 0 is the initial input concentration of sub-
strate.

Second, we consider adding a certain flocculant to remove E. coli from sewage. Let P(t) stand
for the concentration of flocculants in sewage at time t, considering the saturation effect of microbial
flocculation, the consumption of flocculants can be expressed as h3X(t)P(t)

Ks+X(t) and the amount of microor-
ganisms flocculated by microbial flocculants can be expressed as h2X(t)P(t)

Ks+X(t) . Then we get the equations
of concentration change of flocculants and microorganisms during treatment respectively as follows,

dP(t)
dt

= D(P0 − P(t)) −
h3X(t)P(t)
Ks + X(t)

,

and
dX(t)

dt
=
µmS (t)X(t)
Km + S (t)

− DX(t) −
h2X(t)P(t)
Ks + X(t)

,

where Ks represents the half-saturation constant, h3 and h2 are the maximum consumption rate of
flocculants and the maximum flocculation rate, respectively. P0 is the initial input concentration of
flocculants. Then, a mathematical model by the ordinary differential equations (ODEs) is proposed to
describe continuous eliminating microorganisms process using microbial flocculants as follows,

dS (t)
dt

= D(S 0 − S (t)) −
µmS (t)X(t)
δ(Km + S (t))

,

dX(t)
dt

=
µmS (t)X(t)
Km + S (t)

− DX(t) −
h2X(t)P(t)
Ks + X(t)

,

dP(t)
dt

= D(P0 − P(t)) −
h3X(t)P(t)
Ks + X(t)

,

(1.1)

system (1.1) describes the process of treating microorganisms in sewage by continuously adding mi-
crobial flocculants based on a chemostat system.
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Figure 1. Flow-process diagram.

However, sewage treatment is a discontinuous process [26–29]. Generally, a certain amount of
flocculant is released at intervals to treat microorganisms in sewage. Therefore, the concentration
change of the flocculant in the system is not a continuous process, and the concentration of flocculant
in the system will change sharply in the initial stage of flocculant delivery. This sharp change can be
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represented by Impulsive Differential Equations (IDEs), mathematically. In the past 20 years, IDEs
have received extensive attention, and have been widely used in predator-prey model [32–43], chemo-
stat model [44–52], epidemic model [53–58] and general theoretical study [59–61]. Then based on
model (1.1), by introducing microbial flocculants periodically, a more realistic model for eliminating
microorganisms is proposed as follows,

dS (t)
dt

= D(S 0 − S (t)) −
µmS (t)X(t)
δ(Km + S (t))

,

dX(t)
dt

=
µmS (t)X(t)
Km + S (t)

− DX(t) −
h2X(t)P(t)
Ks + X(t)

,

dP(t)
dt

= −DP(t) −
h3X(t)P(t)
Ks + X(t)

,


t , nT,

∆S (t) = 0,
∆X(t) = 0,
∆P(t) = γP0,

 t = nT,

(1.2)

where T is the impulsive period, γP0 is the amount of flocculant added in each period T. ∆P(t) =

P(nT +) − P(nT−). P(nT +) = lim
t→nT +

P(t), P(t) is left continuous at t = nT, S (t) and X(t) are continuous
for all t ≥ 0.

This paper is organized as follows, some preliminary knowledge are given in Section 2. Then the
global dynamics of system (1.2) are analyzed in Section 3, more precisely, the existence and globally
asymptotic stability of the microorganisms-extinction periodic solution are discussed in the first part
and the permanence of system (1.2) is discussed in the second part. The control strategy for microbial
treatment is investigated in Section 4. In Section 5, an example with some computer simulations are
given to illustrate the theoretical results. At last, a brief conclusion is given in Section 6.

2. Preliminaries

In this section, we will give some preliminary knowledge. Let N be the set of all non-negative
integers, and R+ = [0,∞),R3

+ = {x ∈ R3 : x ≥ 0},Ω = intR3
+. Denote the solution of system (1.2)

by X = (S (t), X(t), P(t)) : R+ → R3
+, then X is continuously differentiable on ((n − 1)T, nT )(n ∈ N),

moreover, the global existence and uniqueness of solutions of system (1.2) can be guaranteed by the
smoothness properties of f , where the map f = ( f1, f2, f3)T is defined by the system (1.2).

Definition 2.1. ( [62,63]) Suppose M : R+×R3
+ → R+, and M is continuous in ((n−1)T, nT ]×R3

+, n ∈ N,
for each x ∈ R3

+, lim(t,u)→(nT +,x) M(t, z) exist, and M is locally Lipschitz continuous with respect to x in
((n − 1)T, nT ] × R3

+, n ∈ N. Then for (t, x) ∈ ((n − 1)T, nT ] × R3
+, n ∈ N, the upper right derivative of

M(t, x) with respect to (1.2) can be defined as

D+M(t, x) = lim sup
h→0+

1
h

[M(t + h, x + h f (t, x)) − M(t, x)].

Lemma 2.1. [54] Consider the impulsive differential system
dh(t)

dt
= c − dh(t), t , nT, n ∈ N,

∆h(t) = µ, t = nT, n ∈ N,
(2.1)
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then system (2.1) has a globally attractive T periodic solution h∗(t), where

h∗(t) =
c
d

+
µe−d(t−nT )

1 − e−dT .

Lemma 2.2. Let T (t) = (S (t), X(t), P(t)) be a solution of system (1.2) satisfying T (0+) ≥ 0, then
T (t) ≥ 0 for all t ≥ 0.

Lemma 2.3. For the solution (S (t), X(t), P(t)) of system (1.2), we have

lim sup
t→∞

S (t) ≤ S 0 = M1, lim sup
t→∞

X(t) ≤ δS 0 = M2, lim sup
t→∞

P(t) ≤
γP0eDT

eDT − 1
= M3.

In fact, by standard analytical methods, it is easy to get that the solution of system (1.2) is ultimately
bounded. This method is similar to [36], here, we omit it.

3. Global dynamics analysis for model (1.2)

3.1. Existence and globally asymptotic stability of the microorganisms-extinction periodic solution

At first, we discuss the case in which the microorganisms eventually become extinct. To this end,
let X(t) = 0 in system (1.2), a low dimensional system is obtained as follows,

dS (t)
dt

= D(S 0 − S (t)),
dP(t)

dt
= −DP(t),

 t , nT,

∆S (t) = 0,
∆P(t) = γP0,

 t = nT.

(3.1)

Then according to Lemma 2.1, the system (3.1) has a globally attractive positive T periodic solution
(S ∗(t), P∗(t)), where S ∗(t) = S 0,

P∗(t) =
γP0e−D(t−nT )

1−e−DT ,
(3.2)

thus, for system (1.2), we know that system (1.2) has a microorganisms-extinction periodic solution
(S 0, 0, P∗(t)).

Next, we further investigate the globally asymptotic stability of solution (S 0, 0, P∗(t)). Let

R =

µmS 0
Km+S 0

T

DT +
h2γP0
KsD

,R′ =

µmS 0
Km+S 0

T

DT +
h2γP0

(Ks+M2)(D+
h3 M2

Ks+M2
)

,

then the following theorem is obtained.

Theorem 3.1. If R′ < 1, then the microorganisms-extinction periodic solution (S 0, 0, P∗(t)) is globally
asymptotical stable.
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Proof. The proof is divided into two steps. Firstly, we prove that the microorganisms-extinction peri-
odic solution is locally stable by using Floquet theory [62] and a small amplitude perturbations meth-
ods. By transformation, let S (t) = v1(t) + S 0, X(t) = v2(t), P(t) = v3(t) + P∗(t), for 0 ≤ t < T, there may
be written 

v1(t)
v2(t)
v3(t)

 = Ψ(t)


v1(0)
v2(0)
v3(0)

 ,
where Ψ satisfies

dΨ(t)
dt

=


−D µmS 0

δ(Km+S 0) 0
0 µmS 0

Km+S 0
− D − h2

Ks
P∗(t) 0

0 −
h3P∗(t)

Ks
−D

 Ψ(t),

and Ψ(0) is the identity matrix. Thus we get

Ψ(t) =


e−Dt ∗ 0

0 e
∫ t

0 ( µmS 0
Km+S 0

−D− h2
Ks

P∗(t))dt 0
0 ∗∗ e−Dt

 .
Linearizing the impulse expression of system (1.2) yeilds

v1(nT +)
v2(nT +)
v3(nT +)

 =


1 0 0
0 1 0
0 0 1




v1(nT )
v2(nT )
v3(nT )

 .
Let

M =


1 0 0
0 1 0
0 0 1

 Ψ(T ),

the eigenvalues are λ1 = e−DT < 1, λ2 = e
∫ T

0

(
µmS 0

Km+S 0
−D− h2

Ks
P∗(t)

)
dt
, λ3 = e−DT < 1. If∫ T

0

(
µmS 0

Km + S 0
− D −

h2

Ks
P∗(t)

)
dt < 0,

then λ2 < 1. By calculating the above integral, we can get

µmS 0

Km + S 0
T < DT +

h2γP0

KsD
,

if let

R =

µmS 0
Km+S 0

T

DT +
h2γP0
KsD

,

obviously, if R < 1, then | λ2 |< 1. While, we let

R′ =

µmS 0
Km+S 0

T

DT +
h2γP0

(Ks+M2)(D+
h3 M2

Ks+M2
)

> R.
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Obviously, R′ > R. Thus if R′ < 1, we have | λ2 |< 1. Therefore by Floquet theory [62], we obtain
that (S 0, 0, P∗(t)) is locally stable.

Next step, we will discuss the globally attractive. Since R′ > 1, we can choose two arbitrary
positive numbers ε1, ε2 such that

δ =

(
µm(S 0 + ε1)

Km + (S 0 + ε1)
− D +

h2ε2

Ks + M2

)
T −

h2γP0

(Ks + M2)(D + h3 M2
Ks+M2

)
< 0.

From system (1.2), one can get 
dS (t)

dt
≤ D(S 0 − S (t)), t , nT,

∆S (t) = 0, t = nT.

Construct the auxiliary system 
du1(t)

dt
= D(S 0 − u1(t)), t , nT,

∆u1(t) = 0, t = nT,

u1(0) = S (0),

by Lemma 2.1, we have u1(t) → S 0 as t → ∞. By the comparison theorem of ODEs [64], we have
S (t) ≤ u1(t), then for arbitrarily small positive number ε1,

S (t) ≤ u1(t) < S 0 + ε1 (3.3)

holds for all t large enough.
On the other hand, we can also get from system (1.2),

dP(t)
dt
≥ −

(
h3M2

Ks + M2
+ D

)
P(t), t , nT,

∆P(t) = γP0, t = nT,
(3.4)

then construct the auxiliary system
du2(t)

dt
= −

(
h3M2

Ks + M2
+ D

)
u2(t), t , nT,

∆u2(t) = γP0, t = nT,

u2(0) = P(0),

(3.5)

by Lemma 2.1, we have u2(t)→ u∗2(t) (t → ∞), where

u∗2(t) =
γP0e−( h3 M2

Ks+M2
+D)(t−nT )

1 − e−( h3 M2
Ks+M2

+D)T
, nT < t ≤ (n + 1)T

is the periodic solution of system (3.5). According to the comparison theorem of IDEs, we obtain
P(t) ≥ u2(t) and for sufficiently small ε2 > 0,

P(t) ≥ u2(t) > u∗2(t) − ε2 (3.6)
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holds for all t large enough.
On the other hand, by the second equation, the fifth equation, (3.3) and (3.6), one can get that

dX(t)
dt
≤

[
µm(S 0 + ε1)

Km + (S 0 + ε1)
− D −

h2

Ks + M2
(u∗2(t) − ε2)

]
X(t) (3.7)

for all t large enough.
Integrating both sides of (3.7) from nT to (n + 1)T yields

X((n + 1)T ) ≤ X(nT +) exp
∫ (n+1)T

nT

(
µm(S 0 + ε1)

Km + (S 0 + ε1)
− D −

h2

Ks + M2
(u∗2(t) − ε2)

)
dt

= X(nT )eδ.

Then we have X(nT ) ≤ X(0+)enδ. Since δ < 0, hence X(nT ) → 0 and because 0 ≤ X(t) ≤
X(nT ) exp

(
µmS 0

Km+S 0

)
T holds for nT < t ≤ (n + 1)T, therefore, we get X(t)→ 0 as t → ∞.

Since limt→+∞ x(t) = 0, thus for any ε > 0, there has a T1 > 0 such that X(t) < ε for t ≥ T1. Then by
first equation of (1.2), we get

DS 0 −

(
D +

εµm

δKm

)
S (t) ≤

dS (t)
dt
≤ D(S 0 − S (t)).

Consider the following auxiliary systems

dz1(t)
dt

= DS 0 − (D +
εµm

δKm
)z1(t) (3.8)

and
dz2(t)

dt
= D(S 0 − z2(t)). (3.9)

Let z1(t) and z2(t) are solutions of (3.8) and (3.9), respectively. There have z1(t) → D
D+

εµm
δKm

S 0, z2(t) →
S 0(t → ∞). Thus for any ε1 > 0, there exist T2 > 0 and T3 > 0 such that

z1(t) >
D

D +
εµm
δKm

S 0 − ε1 and z2(t) < S 0 + ε1

for t > T2 and t > T3, respectively. By the comparison theorem of IDEs, for any ε1, there must exist
T4 = max{T2,T3} such that

z1(t) ≤ S (t) ≤ z2(t),

for t > T4. Then we have
D

D +
εµm
δKm

S 0 − ε1 < S (t) < S 0 + ε1.

Let ε→ 0, we get
S 0 − ε1 < S (t) < S 0 + ε1,

i.e., S (t)→ S 0 as t → ∞.
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Similarly, from system (1.2), one can get that

−

(
D +

εh3

Ks + ε

)
P(t) ≤

dP(t)
dt
≤ −DP(t).

Consider the following auxiliary systems
du3(t)

dt
= −

(
εh3

Ks + ε
+ D

)
u3(t), t , nT,

∆u3(t) = γP0, t = nT,

u3(0+) = P(0+),

(3.10)

and 
du4(t)

dt
= −Du4(t), t , nT,

∆u4(t) = γP0, t = nT,

u4(0+) = P(0+),

(3.11)

where u3(t) and u4(t) are solutions of (3.10) and (3.11), respectively. Then have u3(t)→ u∗3(t), u4(t)→

P∗(t)(t → ∞), where u∗3(t) =
γP0e−(D+

εh3
Ks+ε )(t−nT )

1−e−(D+
εh3

Ks+ε )T
, nT < t ≤ (n + 1)T. Thus for any ε2 > 0, there exist T5 > 0

and T6 > 0 such that
u3(t) > u∗3(t) − ε2 and u4(t) < P∗(t) + ε2

for t > T5 and t > T6, respectively. By the comparison theorem of IDEs, for any ε2, there must exist
T7 = max{T5,T6} such that

u3(t) ≤ P(t) ≤ u4(t),

then we obtain
γP0e−(D+

εh3
Ks+ε )(t−nT )

1 − e−(D+
εh3

Ks+ε )T
− ε2 < P(t) < P∗(t) + ε2, (3.12)

let ε→ 0, then we have P(t)→ P∗(t) (t → ∞). The proof is completed. �

3.2. Permanence

Theorem 3.2. System (1.2) is permanent if R > 1 holds.

Proof. By Lemma 2.3, we obtain that the solution of system (1.2) is ultimately bounded. Then to
prove the permanence of system (1.2), we only need find three positive constants l1, l2 and l3 such that
S (t) ≥ l1, X(t) ≥ l2, P(t) ≥ l3 for t large enough.

We assume S (t), X(t), P(t) ≤ M for all t ≥ 0. At first, from system (1.2), we obtain
dS (t)

dt
≥ DS 0 −

(
D +

µmM
δKm

)
S (t), t , nT,

∆S (t) = 0, t = nT.

By the comparison theorem of ODEs, we can derive that

S (t) >
DS 0

D +
µm M
δKm

− ε = l1 > 0
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for t large enough. And from (3.4), (3.5) and (3.6), we can obtain

P(t) ≥ u2(t) > u∗2(t) − ε >
γP0e−(D+

h3 M
Ks+M )T

1 − e−(D+
h3 M

Ks+M )T
−ε = l3 > 0 (3.13)

for t large enough. Next, we aim to get l2 > 0 such that X(t) > l2 for t large enough. We will implement
it in two steps.

Step one. Choose l4 =
Dδ(R−1)(Km+S 0)

µm(R+1) , because R > 1, then l4 > 0. Let

χ =

(
µmα

Km + α
− D

)
T −

h2γP0

KsD
,

where α = DS 0

D+
µml4
δKm

. Since R =

µmS 0
Km+S 0

T

DT+
h2γP0
KsD

, then we have

µmS 0T
Km + S 0

=

(
DT +

h2γP0

KsD

)
R,

thus we have

χ =

(
µmα

Km + α
− D

)
T −

h2γP0

KsD
> 0.

Therefore, there exist two positive constants ε1, ε2 small enough such that

η =

[(
µm(α − ε1)

Km + (α − ε1)

)
− D

]
T − h2

(
γP0

KsD
+ ε2T

)
> 0.

In the following, we shall show that x(t) < l4 cannot hold for all t ≥ 0. If not, let us return to system
(1.2), by simple inequality, we have

dS (t)
dt
≥ DS 0 −

(
D +

µml4

δKm

)
S (t), t , nT,

∆S (t) = 0, t = nT.

By the comparison theorem of ODEs, for t large enough we have

S (t) >
DS 0

D +
µml4
δKm

− ε1 = α − ε1. (3.14)

From (3.12), we obtain

P(t) < P∗(t) + ε2 =
γP0e−D(t−nT )

1 − e−DT + ε2. (3.15)

Thus by (3.14) and (3.15), we obtain

dX(t)
dt
≥

(
µm(α − ε1)

Km + (α − ε1)
− D −

h2

Ks
(P∗(t) + ε2)

)
X(t). (3.16)
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Integrating (3.16) on (nT, (n + 1)T ], n ∈ N yields

X((n + 1)T ) ≥ X(nT +)
∫ (n+1)T

nT

(
µm(α − ε1)

Km + (α − ε1)
− D −

h2

Ks
(P∗(t) + ε2)

)
dt

= X(nT )
∫ (n+1)T

nT

(
µm(α − ε1)

Km + (α − ε1)
− D −

h2

Ks
(P∗(t) + ε2)

)
dt

= X(nT ) expη .

Then we obatain X((N + n)T ) ≥ X(NT )enη → ∞ as n → ∞, which is contradictory with the bounded-
ness of system (1.2). Hence there has a t1 > 0 such that X(t1) ≥ l4.

Step two. If X(t) > l4 for all t ≥ t1, then our goal is achieved. Otherwise, denote tM = inft>t1{X(t) <
l4}, then we have X(t) ≥ l4 for t ∈ [t1, tM] and X(tM) = l4, assume there exists n1 ∈ Z+ such that
tM ∈ (n1T, (n1 + 1)T ). According to the change of x(t) in the interval (n1T, (n1 + 1)T ), there have two
subcases to be discussed.

Case one, If X(t) ≤ l4 for all t ∈ (tM, (n1 + 1)T ). Let n2, n3 ∈ N such that

n2T > max{
1
D

ln
M +

γP0
1−e−DT

ε
,

1
D

ln
M + S 0

ε
},

e(n2+1)δT en3η > 1,

where

δ = h
(

DS 0

D + h1l4
− ε1

)
−

h2M
Ks
− D < 0.

We can confirm that there has a t2 ∈ [(n1 + 1)T, (n1 + 1 + n2 + n3)T ] such that X(t2) > l4. If not, let us
consider the following system,

du5(t)
dt

= DS 0 −

(
D +

µml4

δKm

)
S (t), t , nT,

∆S (t) = 0, t = nT,

u5((n1 + 1)T +) = S ((n1 + 1)T +),

and 
du4(t)

dt
= −Du4(t), t , nT,

∆u4(t) = γP0, t = nT,

u4((n1 + 1)T +) = P((n1 + 1)T +),

we have
u5(t) = (u5(tM+) − u∗5(0))e−D(t−(n1+1)) + u∗5(t)

and
u4(t) = (u4(tM+) − u∗4(0))e−D(t−(n1+1)) + u∗4(t)

for t ∈ [(n1 + 1)T, (n1 + 1 + n2 + n3)T ]. Then

|u5(t) − u∗5(t)| ≤ (M + S 0)e−D(t−(n1+1)T ) < ε,
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and
|u4(t) − P∗(t)| ≤ (M +

γP0

1 − e−DT )e−D(t−(n1+1)T ) < ε,

this makes (3.16) hold for t ∈ [(n1 + 1)T, (n1 + 1 + n2 + n3)T ]. Thus integrating both sides of (3.16)
from (n1 + 1 + n2)T to (n1 + 1 + n2 + n3)T ] yields

X((n1 + 1 + n2 + n3)T ) ≥ X((n1 + 1 + n2)T )en3η. (3.17)

On the other hand, we can also obtain from system (1.2),

dX(t)
dt
≥

(
h
(

DS 0

D + h1l4
− ε1

)
− D −

h2M
Ks

)
X(t), (3.18)

by integrating both sides of system (3.18) from tM to (n1 + 1 + n2)T, we get

X((n1 + 1 + n2)T ) ≥ X(tM)e(n1+1+n2−tM)δT ≥ l4e(n2+1)δT . (3.19)

From the above system and (3.17), one can have

X((n1 + 1 + n2 + n3)T ) ≥ l4e(n2+1)δT en3η > l4,

The result is contradictory.
Denote t̃ = inf

t>tM
{X(t) > l4} , then for t ∈ (tM, t̃), X(t) ≤ l4 and X(t̃) = l4. For t ∈ (tM, t̃), suppose

t ∈ (n1T + (k − 1)T, n1T + kT ′], k ∈ Z+, k ≤ 1 + n2 + n3, one can get

X(t) ≥ l4ekδT ≥ l4e(1+n2+n3)δT .

Let l2 = l4e(1+n2+n3)δT < l4, then X(t) ≥ l2 for t ∈ (tM, t̃). For the case t > t̃, the same arguments can be
continued since x(t̃) ≥ l4. Thus X(t) ≥ l2 for all t > t1.

Case two, there has a t ∈ (tM, (n1 + 1)T ) such that X(t) > l4. Choose tMM = inf
t>tM
{X(t) > l4} , then for

t ∈ (tM, tMM), X(t) ≤ l4 and X(tMM) = l4. For t ∈ (tM, tMM), (3.18) holds true, by integrating (3.18) from tM

to tMM), we can get
X(t) ≥ X(tM)eδ(t−tM) ≥ l4eδT > l2.

Because X(tMM) ≥ l2 for all t > tMM, the same arguments can be continued. Thus X(t) ≥ l2 for all t ≥ t1.

This completes the proof of Theorem 3.2. �

4. Control strategy for microorganisms treatment

In Section 3, we get the thresholds which can determine the extinction and existence of the mi-
croorganisms. In this section, we investigate the control strategy for microorganisms treatment based
on the thresholds. By theorem 3.1, if the threshold R′ < 1, then the microorganisms-extinction pe-
riodic solution (S 0, 0, P∗(t)) is globally asymptotically stable. Biologically, the microorganisms will
eventually become extinct. Then, in order to eliminate harmful microorganisms in sewage, we can
take the following two control strategies.

Denote
T ∗ =

h2γP0(Km + S 0)

(Ks + M2)(D + h3 M2
Ks+M2

)[µmS 0 − D(Km + S 0)]
,
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γP∗0 =
T [µmS 0 − D(Km + S 0)](Ks + M2)(D + h3 M2

Ks+M2
)

h2(Km + S 0)
.

[
P0

T
]M =

[µmS 0 − D(Km + S 0)](Ks + M2)(D + h3 M2
Ks+M2

)

h2γ(Km + S 0)

Control strategy I. Shorten the time interval T for entering the flocculants such that T < T ∗. Biologi-
cally, shorter pulse action intervals increase the efficiency of using flocculants, which helps to eliminate
the microorganisms in sewage.

Control strategy II. Keep the time interval between the input of flocculant and increase the amount
of flocculant such that P0 > P∗0. Biologically, higher concentrations of flocculants help to eliminate
microorganisms.

Also, we can get the threshold value of P0
T , the average amount of flocculants added in the long

run. Whether it is shortening the time interval T such that T < T ∗ or increasing the amount of floccu-
lant such that P0 > P∗0, it will eventually increase the usage of flocculant per unit of time P

T such that
P
T > [ P0

T ]M, while higher concentrations of flocculants is beneficial to the removal of harmful microor-
ganisms.

Under above control strategies, we can achieve the treatment process of microorganisms by reducing
the time interval for adding flocculants and increase the amount of flocculant used in each treatment
cycle in the actual sewage treatment process.

5. An example and computer simulations

In this section, we give an example with some computer simulations to illustrate the theoretical
results and the the control strategy. Let basic parameters be S 0 = 4,D = 0.5, h2 = 2.5, h3 = 0.05, µm =

1.5, δ = 0.1,Km = 0.5,Ks = 0.5,Ka = 0.5, γ = 1, then we can obtain

dS (t)
dt

= 0.5(4 − S (t)) −
1.5S (t)X(t)

0.1(0.5 + S (t))
,

dX(t)
dt

=
1.5S (t)X(t)
0.5 + S (t)

− 0.5X(t) −
2.5X(t)P(t)
0.5 + X(t)

,

dP(t)
dt

= −0.5P(t) −
0.05X(t)P(t)

0.5 + X(t)
,


t , nT,

∆S (t) = 0,
∆X(t) = 0,
∆P(t) = P0,

 t = nT.

(5.1)

Let the initial value be (0.5, 0.5, 0). First, we let P0 = 0.15,T = 2, by simple calculation, we obtain R =

1.0667 > 1, by Theorem 3.2, we know that the system is permanent. Biologically, the microorganisms
will exist in sewage for a long time. Numerical simulation shows, with the periodical input of flocculant
(see Figure 2(c)), the microorganisms and substrate produce periodic oscillations (see Figure 2(a)
and 2(b)). Mathematically, the system produces a global asymptotically stable periodic solution (see
Figure 2(d)).

In order to verify the control strategy I, we choose to reduce the period T of the pulse action (for
example, from 2 to 0.8), by simple calculation, we obtain R′ = 0.8942 < 1. By Theorem 3.1, the
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system has a globally asymptotically stable microorganisms-extinction periodic solution (S 0, 0, P∗(t))
(see Figure 3(d)), this makes the microorganisms eventually extinct (see Figure 3(b)). At this time, the
substrate and flocculant approach the periodic solution (S 0, P∗(t)) due to the action of the pulse (see
Figure 3(a) and 3(c)).

Next, in order to verify the control strategy II, we increase the amount of flocculant used γP0 (for
example, from 0.15 to 0.35, and other parameters are the same with those in Figure 2). By calculation,
we obtain R′ = 0.9357 < 1. By Theorem 3.1, the system produces a global asymptotically stable
periodic solution (see Figure 4(d)), that is, the microorganisms will eventually extinct.

If we use strategies I and II at the same time, the harmful microorganisms can be removed more
quickly (see Figure 5(b)).

In summary, computer simulations show that the control strategy is effective. The time of the
pulse action T and the amount of flocculant used γP0 have an important influence on the removal of
harmful microorganisms. From Figure 2(b), Figure 3(b) and Figure 4(b), we can see that the harmful
microorganisms that have existed for a long time in the system will eventually be eliminated under the
control strategy I or II.

Table 1. Threshold, state of system and the corresponding figures.

T γP0 The threshold value Microorganisms Figure
2 0.15 R = 1.0667 > 1 permanence Figure 2

0.8 0.15 R′ = 0.8942 < 1 extinction Figure 3
2 0.35 R′ = 0.9357 < 1 extinction Figure 4

0.8 0.35 R′ = 0.4741 < 1 extinction Figure 5

6. Conclusion

In this paper, a mathematical model by impulsive differential equations is proposed to describe the
process of eliminating microorganisms from livestock and poultry sewage by adding microbial floccu-
lants. In the model, we establish the law of variation among substrate, microorganisms and flocculants.
Using standard mathematical theories and methods, we analyze the evolution of variables over time in
the model system. We prove that the system has a microorganisms-extinction periodic solution which
is globally asymptotically stable if R′ < 1. Biologically, this means that microorganisms will eventu-
ally be eliminated from the system. And if R > 1, we prove that the system is permanent, that is, the
substrate, microorganisms and flocculants will coexist for a long time. Based on theoretical analysis,
we discuss control strategies for eliminating microorganisms. Our results show that microorganisms
can be eliminated by adjusting the time interval for adding flocculants and the amount of flocculant
used.
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(d) The relationship diagram among S (t), X(t), P(t).

Figure 2. Basic behavior of solutions of the system (5.1) where R = 1.0667 > 1.
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Figure 3. Basic behavior of solutions of the system (5.1) where R′ = 0.8942 < 1.
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Figure 4. Basic behavior of solutions of the system (5.1) where R′ = 0.9357 < 1.
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Figure 5. Basic behavior of solutions of the system (5.1) where R′ = 0.4741 < 1.
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