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Abstract: Recent studies have demonstrated that both virus-to-cell infection and cell-to-cell
transmission play an important role in the process of HIV infection. In this paper, stochastic
perturbation is introduced into HIV model with virus-to-cell infection, cell-to-cell transmission, CTL
immune response and three distributed delays. The stochastic integro-delay differential equations is
transformed into a degenerate stochastic differential equations. Through rigorous analysis of the model,
we obtain the solution is unique, positive and global. By constructing appropriate Lyapunov functions,
the existence of the stationary Markov process is derived when the critical condition is bigger than one.
Furthermore, the extinction of the virus for sufficiently big noise intensity is established. Numerically,
we investigate that the small noise intensity of fluctuations could help to sustain the number of virions
and CTL immune response within a certain range, while the big noise intensity may be beneficial to the
extinction of the virus. We also examine that the influence of random fluctuations on model dynamics
may be more significant than that of the delay.
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1. Introduction

Acquired immune deficiency syndrome (AIDS) is caused by human immunodeficiency virus (HIV),
which is a serious threat to human health. HIV infects the human body by infecting healthy target T-
cells. Meanwhile, the cellular immune response mediated by cytotoxic T lymphocytes (CTLs) can kill
some infected T-cells, thus inhibiting further replication of the virus. Hence, CTLs play a significant
role in the suppression of HIV by killing viral infected T-cells [1]. More and more scholars pay
attention to the research of HIV infection modelling. The mathematical models have been revealed as
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a powerful tool for understanding the mechanism of HIV infection.
Most of these earlier models have focused on the interaction between virus and target cells based

on a hypothesis that infected T-cells produce new virus particles immediately (that is virus-to-cell
infection) [2–8]. However, recent studies have demonstrated that cell-to-cell transmission is largely
unaffected by some obstacles compared with virus-to-cell infection, so that the cell-to-cell transmission
is more efficient than virus-to-cell infection [9–11]. Inspired by the experimental data, Sigal et al. have
showed that under the action of antiretroviral drugs, the virus infection caused by virus-to-cell was
significantly reduced, while the drug sensitivity of infection involving cell-to-cell transmission was
significantly reduced [12]. Cell-to-cell infection may adversely affect the immune system, leading
to the persistence of the virus, thus becoming an obstacle to the treatment of HIV infection [12].
These studies suggest that cell-to-cell transmission contributes to the pathogenesis of viral infection.
Consequently, in the process of HIV infection, we should not ignore the mode of cell-to-cell infection,
which may play an important role in viral spread in vivo. Therefore, the HIV model with both virus-to-
cell and cell-to-cell infection modes is of research value and significance, which we will concentrate on.

The first mathematical model involving cell-to-cell infection was proposed by Culshaw et al. [13],
and they also considered the intracellular delay caused by cell-to-cell infection. They studied the effect
of time delay on the stability of positive equilibrium, and the model exhibit Hopf bifurcation with
intracellular delay as the bifurcation parameter. In fact, there are two main types of delays in the
process of HIV infection within-host: (i) the intracellular delay, that is, the time it takes for a virus
to infect healthy T-cell to become productively infected T-cell; (ii) the immune delay, that is, the time
when viral infection activates the CTL immune response. In this paper, we incorporate two routes
of infection modes (both virus-to-cell and cell-to-cell) and three time delays (two intracellular delays
caused by two infection modes and one immune response delay). Many scholars have examined the
effects of two infection modes and multiple delays on viral dynamics, see for example [14–24], and
references therein.

The parameters of the previous references are considered to be a fixed constant in the average
sense, while randomness is an inevitable factor in real life. In the macroscopical field of infectious
diseases, many scholars have introduced the stochastic fluctuation into the process of mathematical
modelling and have examined the effect of the stochastic perturbation on model behaviors [25–29].
In the microscopic field of HIV infection in vivo, it has been proved that HIV transcription is an
inherent random process and produces strong fluctuations in virus gene expression [30]. Thus, random-
generated expression variability is increasingly considered to have important phenotypic consequences
in different cellular environments, such as multicellular development, cancer progression, and viral
latency [31]. Mao et al. have further demonstrated that even a small random disturbance could suppress
population explosion through rigorous mathematical analysis [32]. Hence, stochastic perturbation can
be included in the process of modelling to accurately depict reality.

At present, some kinds of stochastic HIV infection model have been studied [33–36], but these
models only considered the factor of virus-to-cell infection mode, and did not involve the factors of
cell-to-cell infection mode and time delays. Lately, some researchers [37, 38] have investigated the
asymptotic behaviors of a two-dimensional cell-to-cell HIV model with random noise, while they did
not refer to the virus-to-cell mode. In this paper, we extend the deterministic model with virus-to-cell
infection, cell-to-cell infection, CTL immune response and distributed delays by including the random
fluctuations. As far as we know, few people have studied the random HIV model of virus-to-cell
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infection, cell-to-cell transmission and time delays.
Some authors have studied stochastic differential equations with time delays for epidemic infectious

disease [39], Lotka-Volterra system [40] and algal bloom [41]. However, the introduction of time delay
into stochastic viral dynamics model is rare. Here, we apply stochastic delay differential equations to
the field of HIV within-host, and the main purpose of this paper are: (i) study the existence of stationary
Markov process of a degenerate stochastic differential equations; (ii) investigate the influences of noise
intensity, cell-to-cell infection and time delays on virus dynamics under realistic parameter values.

The organization of this article is as follows. In Section 2, a degenerate stochastic HIV model with
cell-to-cell infection and CTL immune response is derived, and the existence and uniqueness of the
global positive solution are also shown. In Section 3, by formulating appropriate Lyapunov functions,
we obtain the existence of a stationary Markov process. The extinction of the virus is given in Section 4.
In Section 5, we take numerical simulations to verify our theoretical analysis results based on realistic
parameter values of HIV in published references, and we also investigate the effects of noise intensity,
cell-to-cell infection and delays on virus dynamics, respectively. Finally, we conclude our work.

2. Model and preliminaries

According to the existing literature [14,18–24], a deterministic HIV infection model including cell-
to-cell infection, CTL immune response and distribution delays is as follows

dT (t)
dt = λ − µ1T (t) + rT (t)

(
1 − T (t)

Tmax

)
− β1T (t)V(t) − β2T (t)I(t),

dI(t)
dt =

∫ ∞
0
β1T (t − τ)V(t − τ) f1(τ)e−s1τdτ +

∫ ∞
0
β2T (t − τ)I(t − τ) f2(τ)e−s2τdτ

−µ2I(t) − qE(t)I(t),
dV(t)

dt = kI(t) − µ3V(t),
dE(t)

dt = p
∫ ∞

0
I(t − τ) f3(τ)e−s3τdτ − µ4E(t),

(2.1)

where, T (t), I(t), V(t) and E(t) represent the concentrations of healthy T-cells, infected cells, virions
and CTLs at time t, respectively. Parameter λ is the source of CD4+ T-cells from precursors. The
mitosis of healthy T-cells is described as the logistic term rT (t)

(
1 − T (t)

Tmax

)
, where r is the intrinsic

mitosis rate and Tmax is the carrying capacity of the healthy T-cells. µi (i = 1, 2, 3, 4) are the death
rates of T (t), I(t), V(t) and E(t) populations, respectively. β1 is the infection rate of free virus by
virus-to-cell infection mode, and β2 is the infection rate of productively infected cells by cell-to-cell
infection mode. The probability distribution functions f1(τ) and f2(τ) stand for the time for infected
T-cells to become productively infected due to virus-to-cell infection and cell-to-cell infection modes,
respectively. e−s1τ and e−s2τ are the survival rates of cells that are infected by virus and infected cells at
time t and become activated infected τ time. The delay of the mature viral particles is described by the
probability distribution f3(τ) and e−s3τ accounts for the survival probability during the delay period τ.
k represents the average production rate of virus from an infected T-cell. q is CTL effectiveness and p
is CTL responsiveness.

We assume that fi(τ) : [0,∞)→ [0,∞) are probability distributions with compact support, fi(τ) ≥ 0
and

∫ ∞
0

fi(τ)dτ = 1, i = 1, 2, 3. For the distributed delays, the kernels are usually been chosen as a
gamma distribution [42, 43],

fi(τ) =
tnrn+1

i e−riτ

n!
, i = 1, 2, 3,
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where n is a nonnegative integer. For convenience of this study, we take all the kernels as weak kernels
case, that is the gamma distribution with n = 0,

fi(τ) = rie−riτ, i = 1, 2, 3. (2.2)

For system (2.1) with weak kernels (2.2), these authors [14, 19, 22–24] have studied its dynamics
theoretically. It is shown that system (2.1) with weak kernels (2.2) always has an infection-free
equilibrium E0 (T0, 0, 0, 0), where

T0 =
Tmax

2r

r − µ1 +

√
(r − µ1)2 +

4rλ
Tmax

 . (2.3)

The basic reproduction number is,

R0 = R01 + R02 =
β1kT0

µ2µ3
·

r1

r1 + s1
+
β2T0

µ2
·

r2

r2 + s2
,

where, basic reproduction number R01 stands for the infection by virus-to-cell infection mode, and
R02 stands for the infection by cell-to-cell infection mode. Summarizing the results of references
[14, 19, 22–24], the main theoretical results of system (2.1) with weak kernels (2.2) are as follows:

(I) If R0 < 1, the infection-free equilibrium E0 is globally asymptotically stable under the condition
s1τ1 = s2τ2.

(II) If R0 > 1, the positive equilibrium E∗ (T ∗, I∗,V∗, E∗) is globally attractive under the conditions
s1τ1 = s2τ2 and r

(
1 − T ∗

Tmax

)
< µ1.

In this paper, considering random fluctuation of system (2.1), we assume that the stochastic
fluctuation is the white noise type, that is

µ1 → µ1 − σ1Ḃ1(t), µ2 → µ2 − σ2Ḃ2(t), µ3 → µ3 − σ3Ḃ3(t), µ4 → µ4 − σ4Ḃ4(t).

System (2.1) with random fluctuations can be written as the following stochastic integro-delay
differential system

dT (t) =
[
λ − µ1T (t) + rT (t)

(
1 − T (t)

Tmax

)
− β1T (t)V(t) − β2T (t)I(t)

]
dt + σ1T (t)dB1(t),

dI(t) =
[ ∫ ∞

0
β1T (t − τ)V(t − τ) f1(τ)e−s1τdτ +

∫ ∞
0
β2T (t − τ)I(t − τ) f2(τ)e−s2τdτ

−µ2I(t) − qE(t)I(t)
]
dt + σ2I(t)dB2(t),

dV(t) = (kI(t) − µ3V(t))dt + σ3V(t)dB3(t),
dE(t) =

[
p
∫ ∞

0
I(t − τ) f3(τ)e−s3τdτ − µ4E(t)

]
dt + σ4E(t)dB4(t),

(2.4)

where, Bi(t) (1 ≤ i ≤ 4) are independent standard Brownian motions with Bi(0) = 0, and σ2
i > 0

(1 ≤ i ≤ 4) represent the intensities of the white noises. The remaining parameters meanings are the
same as in system (2.1).

In the following, we mainly focus on the weak kernels (2.2) case for system (2.4). Let

Z1(t) =

∫ ∞

0
r1T (t − τ)V(t − τ)e−(s1+r1)τdτ,

Z2(t) =

∫ ∞

0
r2T (t − τ)I(t − τ)e−(s2+r2)τdτ,

Z3(t) =

∫ ∞

0
r3I(t − τ)e−(s3+r3)τdτ.
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By calculation, we derive that
dZ1

dt
= r1TV − (r1 + s1)Z1,

dZ2

dt
= r2T I − (r2 + s2)Z2,

dZ3

dt
= r3I − (r3 + s3)Z3.

Therefore, system (2.4) with weak kernels (2.2) can be rewritten as the following degenerate stochastic
differential system

dT =
[
λ − µ1T + rT

(
1 − T

Tmax

)
− β1TV − β2T I

]
dt + σ1TdB1(t),

dI = (β1Z1 + β2Z2 − µ2I − qEI) dt + σ2IdB2(t),
dV = (kI − µ3V)dt + σ3VdB3(t),
dE = (pZ3 − µ4E)dt + σ4EdB4(t),
dZ1 = [r1TV − (r1 + s1)Z1] dt,
dZ2 = [r2T I − (r2 + s2)Z2] dt,
dZ3 = [r3I − (r3 + s3)Z3] dt.

(2.5)

Throughout this article, let Bi(t) (1 ≤ i ≤ 4) are Brownian motions defined on the complete
probability space (Ω,F ,P) adopting to the filtration {Ft}t≥0. We also let
X(t) = (T (t), I(t),V(t), E(t),Z1(t), Z2(t),Z3(t)), X0 = (T (0), I(0),V(0), E(0),Z1(0), Z2(0),Z3(0)), and
R7

+ = {X = (X1, X2, X3, X4, X5, X6, X7) ∈ R7 : X j > 0, 1 ≤ j ≤ 7}. Thus, we use a ∧ b to denote
min{a, b}, and use a ∨ b to represent max{a, b}.

For convenience, we introduce the following symbols

η1 =
µ2

4k
, η2 =

µ2(r3 + s3)
4pr3

,

η3 =
β1

r1
, η4 =

β2

r2
, η5 =

µ2

2r3
.

(2.6)

The following result shows that system (2.5) has a unique positive global solution.

Theorem 2.1. System (2.5) has a unique and positive solution X(t) with the initial value X0 ∈ R
7
+ for

all t ≥ 0, and the solution will remain in R7
+ with probability one, namely, X(t) ∈ R7

+ for all t ≥ 0 almost
surely (a.s.).

Proof. Following the theory of stochastic differential equation in Mao’s book [44], it is clear that the
coefficients of system (2.5) are locally Lipschitz continuous. Therefore, stochastic system (2.5) exists
a unique local solution X(t) on t ∈ [0, ρe), where ρe is the explosion time.

Next, we demonstrate the solution is global, that is, we need to show ρe = ∞ a.s.. By using reduction
to absurdity, suppose that there exists a finite time, such that every component of solution X(t) could
not explode to infinity. Let m0 > 0 be large enough such that for every component of X0 located in the
interval [ 1

m0
,m0]. For each integer m ≥ m0, define the stopping time

ρm = inf
{
t ∈ [0, ρe) : min{X j(t)} ≤ 1/m
or max{X j(t)} ≥ m, j = 1, 2, . . . , 7

}
,
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where we set inf ∅ = ∞ (∅ is the empty set). Obviously, ρm is increasing as m → ∞. Denote ρ∞ =

lim
m→∞

ρm, then ρ∞ ≤ ρe a.s.. To illustrate ρ∞ = ∞, we validate it in two cases: (i) If ρ∞ = ∞ is true a.s.,

then ρe = ∞ a.s., so X(t) ∈ R7
+ for all t ≥ 0 a.s.. (ii) If ρ∞ < ∞, assuming there exists a pair of constants

t̃ > 0 and ε ∈ (0, 1) such that P{ρ∞ ≤ t̃} > ε. Then, there exists an integer m1 ≥ m0 such that

P{ρ∞ ≤ t̃} ≥ ε for all m ≥ m1 (2.7)

is established.
Construct a C2-function W: R7

+ → R+,

W(X) =

(
T − a − a ln

T
a

)
+

(
I − b − b ln

I
b

)
+ η1 (V − 1 − ln V)

+ 2η2 (E − 1 − ln E) + η3 (Z1 − 1 − ln Z1) + η4 (Z2 − 1 − ln Z2)

+ η5 (Z3 − 1 − ln Z3) ,

where, a and b are positive constants which will be determined later, and ηi (1 ≤ i ≤ 5) are defined in
Eq (2.6). Applying Itô’s formula [44] to W, we have

dW(X(t)) =LW(X(t))dt + σ1(T − a)dB1(t) + σ2(I − b)dB2(t)
+ σ3η1(V − 1)dB3(t) + 2σ4η2(E − 1)dB4(t),

where LW: R7
+ → R+ is defined by

LW(X) =

(
1 −

a
T

) [
λ − µ1T + rT

(
1 −

T
Tmax

)
− β1TV − β2T I

]
+

1
2

aσ2
1

+

(
1 −

b
I

)
(β1Z1 + β2Z2 − µ2I − qEI) +

1
2

bσ2
2 + η1

(
1 −

1
V

)
(kI − µ3V) +

1
2
σ2

3

+ 2η2

(
1 −

1
E

)
(pZ3 − µ4E) +

1
2
σ2

4 + η3

(
1 −

1
Z1

)
[r1TV − (r1 + s1)Z1]

+ η4

(
1 −

1
Z2

)
[r2T I − (r2 + s2)Z2] + η5

(
1 −

1
Z3

)
[r3I − (r3 + s3)Z3]

≤λ − µ1T + rT
(
1 −

T
Tmax

)
− η3s1Z1 − η4s2Z2 −

µ2

4
I − η1µ3V − 2η2µ4E

+ aµ1 − ra
(
1 −

T
Tmax

)
+ a(β1V + β2I +

1
2
σ2

1) + b(µ2 + qE +
1
2
σ2

2)

+ µ3 + µ4 + r1 + s1 + r2 + s2 + r3 + s3 +
1
2
σ2

3 +
1
2
σ2

4

≤ −
rT 2

Tmax
+

(
r +

ar
Tmax

)
T +

(
aβ2 −

µ2

4

)
I + (aβ1 − η1µ3) V + (bq − 2η2µ4) E

+ K1

≤

(
aβ2 −

µ2

4

)
I + (aβ1 − η1µ3) V + (bq − 2η2µ4) E + K1.

Here, K1 = λ + aµ1 + bµ2 +µ3 + µ4 + r1 + s1 + r2 + s2 + r3 + s3 + 1
2aσ2

1 + 1
2bσ2

2 + 1
2σ

2
3 + 1

2σ
2
4, and K1

is a positive constant. We further choose the constants 0 < a ≤ 1
4

(
µ2
β2
∧

η1µ3
β1

)
, 0 < b ≤ 2η2µ4

q , such that
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aβ2 −
µ2
4 ≤ 0, aβ1 − η1µ3 ≤ 0 and bq − 2η2µ4 ≤ 0 simultaneously. Thus

LW(X) ≤ K1.

We therefore obtain

dW(X(t)) ≤K1dt + σ1(T − a)dB1(t) + σ2(I − b)dB2(t)
+ σ3η1(V − 1)dB3(t) + 2σ4η2(E − 1)dB4(t).

Integrating both sides from 0 to ρm ∧ t̃, we obtain∫ ρm∧t̃

0
dW(X(t)) ≤

∫ ρm∧t̃

0
K1dt + σ1

∫ ρm∧t̃

0
(T − a)dB1(t) + σ2

∫ ρm∧t̃

0
(I − b)dB2(t)

+ σ3η1

∫ ρm∧t̃

0
(V − 1)dB3(t) + 2σ4η2

∫ ρm∧t̃

0
(E − 1)dB4(t).

Taking expectations on both sides, we further get

EW(X(ρm ∧ t̃)) ≤W(X0) + E

∫ ρm∧t̃

0
K1dt ≤ W(X0) + K1̃t. (2.8)

Set Ωm = {ρm ≤ t̃} for m ≥ m1. By Eq (2.7), we derive P(Ωm) ≥ ε. Note that for every ω ∈ Ωm, there
is some j (1 ≤ j ≤ 7) such that X j(ρm, ω) equals either m or 1

m , and hence W(X(ρm, ω)) is no less than
either (

m − a − a ln
m
a

)
∧

(
m − b − b ln

m
b

)
∧ (ηm − η − η ln m)

or (
1
m
− a + a ln(am)

)
∧

(
1
m
− b + b ln(bm)

)
∧

(
η

m
− η + η ln m

)
,

where η = η1 ∧ (2η2) ∧ η3 ∧ η4 ∧ η5. Thereafter, we have

W(X(ρm, ω)) ≥
(
m − a − a ln

m
a

)
∧

(
m − b − b ln

m
b

)
∧ (ηm − η − η ln m)

∧

(
1
m
− a + a ln(am)

)
∧

(
1
m
− b + b ln(bm)

)
∧

(
η

m
− η + η ln m

)
.

From Eq (2.8), we derive

W(X0) + K1̃t ≥E[IΩm(ω)W(X(ρm, ω))]

≥ε
[ (

m − a − a ln
m
a

)
∧

(
m − b − b ln

m
b

)
∧ (ηm − η − η ln m)

∧

(
1
m
− a + a ln(am)

)
∧

(
1
m
− b + b ln(bm)

)
∧

(
η

m
− η + η ln m

) ]
,

where IΩm is the indicator function of Ωm. Letting m→ ∞, then

∞ > W(X0) + K1̃t = ∞.

This leads to the contradictions, so we must have ρ∞ = ∞ a.s.. This completes the proof. �

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7126–7154.



7133

3. Stationary Markov process

In this section, we mainly focus on the persistence of each population. For deterministic model,
we need to show the global asymptotic stability of the positive equilibrium. For stochastic differential
equation system with distributed delays, we need to prove the existence of stationary Markov process.

Firstly, we introduce some knowledge about stochastic differential equations. Consider the
d-dimensional time-homogeneous stochastic differential equation of Itô type

dX(t) = b(X(t))dt +

d∑
r=1

σr(X(t))dBr(t), for t ≥ t0,

with initial value X(t0) = X0 ∈ R
d. By the definition of stochastic differential, this equation is equivalent

to the following stochastic integral equation,

X(t) = X0 +

∫ t

t0
b(X(s))ds +

d∑
r=1

∫ t

t0
σr(X(s))dBr(s), for t ≥ t0.

Summarizing Theorems 3.4 and 3.7 in Khasminskii’s book [45], we derive the following lemma.

Lemma 3.1. It is assumed that the vectors b(X), σ1(X), . . ., σd(X) (t ≥ t0, X ∈ Rd) are continuous
functions of X.

(A1) There is a constant B with the properties

|b(X) − b(Y)| +
d∑

r=1

|σr(X) − σr(Y)| ≤ B|X − Y |,

|b(X)| +
d∑

r=1

|σr(X)| ≤ B(1 + |X|).

(A2) There exists a non-negative C2-function U(X) in Rd such that LU(X) ≤ −1 outside some
compact set.
If these two conditions are satisfied, then there exists a solution of system (2.5) which is a stationary
Markov process.

Define the critical condition Rs
0 as follows

Rs
0 = Rs

01 + Rs
02,

Rs
01 =

β1kλr1(
λ

T0
+ 1

2σ
2
1

) (
µ2 + 1

2σ
2
2

) (
µ3 + 1

2σ
2
3

)
(r1 + s1)

,

Rs
02 =

λβ2r2(
λ

T0
+ 1

2σ
2
1

) (
µ2 + 1

2σ
2
2

)
(r2 + s2)

.

(3.1)

Denote
σ2 = σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4. (3.2)

Theorem 3.1. If Rs
0 > 1, then the solution X(t) of system (2.5) is a stationary Markov process.
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Proof. We employ Lemma 3.1 to prove the existence of stationary Markov process of system (2.5).
In Lemma 3.1, condition (A1) is to ensure that the solution of the system is a Markov process, and
condition (A2) is to show that the solution of the system is stationary. Obviously, the coefficients of
system (2.5) are continuous functions of X and satisfy condition (A1) in Lemma 3.1, which means
that the solution of the system is a Markov process. In the following, we illustrate condition (A2) in
Lemma 3.1 by constructing appropriate nonnegative functions.

Denote
f (T ) = λ + (r − µ1) T −

r
Tmax

T 2,

f is a quadratic function with respect to T . Suppose T0 and −T1 are the roots of f (T ) = 0, then

f (T ) = −
r

Tmax
(T − T0)(T + T1).

As −(T −T0)2 = −(T −T0)(T + T1) + (T −T0)(T0 + T1) ≤ 0, then (T −T0)(T + T1) ≥ (T −T0)(T0 + T1),
and

f (T ) = −
r

Tmax
(T − T0)(T + T1) ≤ −

r
Tmax

(T − T0)(T0 + T1).

Define a function
W1 = − ln T +

T
T0 + T1

−
β2

k
V,

then,

L
(

T
T0 + T1

)
=

1
T0 + T1

[
f (T ) − β1TV − β2T I

]
≤

f (T )
T0 + T1

≤ −
r

Tmax
(T − T0),

Applying Itô’s formula [44] to W1, we obtain

LW1 ≤ −
λ

T
+ µ1 − r

(
1 −

T
Tmax

)
+

1
2
σ2

1 −
r

Tmax
(T − T0) +

(
β1 +

β2µ3

k

)
V

= −
λ

T
+ µ1 − r +

rT0

Tmax
+

1
2
σ2

1 +

(
β1 +

β2µ3

k

)
V

= −
λ

T
+
λ

T0
+

1
2
σ2

1 + α1V.

Here, α1 = β1 +
β2µ3

k , and we use the equality µ1 − r + rT0
Tmax

= λ
T0

at the infection-free equilibrium E0 of
system (2.1). Denote

W2 = − ln I +
q

µ4(r3 + s3)

[
(r3 + s3)E + pZ3 −

pr3

k
I
]
,

and we have

LW2 = −
β1Z1

I
−
β2Z2

I
+ µ2 +

1
2
σ2

2 + α2V,

where α2 =
pqr3µ3

kµ4(r3+s3) .
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Construct a C2-function U1: R7
+ → R,

U1 = W2 − a1 ln V − a2 ln Z1 − (a3 + b1)W1 − b2 ln Z2.

where ai (i = 1, 2, 3) and b j ( j = 1, 2) are positive constants which will be determined later. By Itô’s
formula, we have

LU1 ≤ −
β1Z1

I
− a1

kI
V
− a2

r1TV
Z1
− a3

λ

T
+ a1

(
µ3 +

1
2
σ2

3

)
+ a2(r1 + s1) + a3

(
λ

T0
+

1
2
σ2

1

)
−
β2Z2

I
− b1

λ

T
− b2

r2T I
Z2

+ b1

(
λ

T0
+

1
2
σ2

1

)
+ b2(r2 + s2) +

(
µ2 +

1
2
σ2

2

)
+ (a3α1 + b1α1 + α2)V

≤ − 4 4
√

kλβ1r1a1a2a3 + a1

(
µ3 +

1
2
σ2

3

)
+ a2(r1 + s1) + a3

(
λ

T0
+

1
2
σ2

1

)
− 3 3

√
λβ2r2b1b2 + b1

(
λ

T0
+

1
2
σ2

1

)
+ b2(r2 + s2) +

(
µ2 +

1
2
σ2

2

)
+ (a3α1 + b1α1 + α2)V

Let

a1

(
µ3 +

1
2
σ2

3

)
= a2(r1 + s1) = a3

(
λ

T0
+

1
2
σ2

1

)
=

kλβ1r1(
λ

T0
+ 1

2σ
2
1

) (
µ3 + 1

2σ
2
3

)
(r1 + s1)

,

and

b1

(
λ

T0
+

1
2
σ2

1

)
= b2(r2 + s2) =

λβ2r2(
λ

T0
+ 1

2σ
2
1

)
(r2 + s2)

.

We calculate that,

a1 =
kλβ1r1(

λ
T0

+ 1
2σ

2
1

) (
µ3 + 1

2σ
2
3

)2
(r1 + s1)

,

a2 =
kλβ1r1(

λ
T0

+ 1
2σ

2
1

) (
µ3 + 1

2σ
2
3

)
(r1 + s1)2

,

a3 =
kλβ1r1(

λ
T0

+ 1
2σ

2
1

)2 (
µ3 + 1

2σ
2
3

)
(r1 + s1)

,

b1 =
λβ2r2(

λ
T0

+ 1
2σ

2
1

)2
(r2 + s2)

,

b2 =
λβ2r2(

λ
T0

+ 1
2σ

2
1

)
(r2 + s2)2

.

Denote α3 = a3α1 + b1α1 + α2. Consequently,

LU1 ≤ −
kλβ1r1(

λ
T0

+ 1
2σ

2
1

) (
µ3 + 1

2σ
2
3

)
(r1 + s1)

−
λβ2r2(

λ
T0

+ 1
2σ

2
1

)
(r2 + s2)

+

(
µ2 +

1
2
σ2

2

)
+ α3V

= −

(
µ2 +

1
2
σ2

2

) (
Rs

0 − 1
)

+ α3V

:= −A + α3V,
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where, Rs
0 is defined in Eq (3.1), and

A =

(
µ2 +

1
2
σ2

2

) (
Rs

0 − 1
)
.

Define a C2-function U: R7
+ → R, in the following form,

U(X) = MU1 + U2 + U3 + U4 + U5 + U6 + U7 + U8,

where,

U2 = − ln T, U3 = − ln I, U4 = − ln E,

U5 = − ln Z1, U6 = − ln Z2, U7 = − ln Z3,

U8 =
1

1 + θ
(T + I + η1V + η2E + η3Z1 + η4Z2 + η5Z3)1+θ ,

0 < θ < min
{
1, 1

4σ2 (µ2 ∧ 4µ3 ∧ 4µ4)
}

(see Eq (3.2) for the definition of σ2), and ηi (1 ≤ i ≤ 5) are
defined in Eq (2.6). We choose a suitable constant M > 0 to satisfy the following condition

−AM + C ≤ −2,

where,

C = sup
X∈R7

+

{
−

r
2Tmax

T 2+θ −
µ2

8
I1+θ −

µ3

2
(η1V)1+θ −

µ4

2
(η2E)1+θ −

s1

2
(η3Z1)1+θ

−
s2

2
(η4Z2)1+θ −

η6

2
(η5Z3)1+θ + β2I +

rT
Tmax

+ qE + F + K2

}
< ∞,

K2 = µ1 + µ2 + µ4 + r1 + s1 + r2 + s2 + r3 + s3 +
1
2
σ2

1 +
1
2
σ2

2 +
1
2
σ2

4, (3.3)

and K2 is a positive constant. It is easy to obtain that

lim inf
l→∞,X∈R7

+\Dl

U(X) = +∞,

where Dl = (1
l , l) × (1

l , l) × ( 1
l , l) × ( 1

l , l) × ( 1
l , l) × (1

l , l) × (1
l , l) and l is a positive integer. Since U(X) is

a continuous function, U(X) must have a minimum point X0 in the interior of R7
+. Hence, we define a

nonnegative C2-function U : R7
+ → R as follows

U(X) = U(X) − U(X0).
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Using Itô formula, we obtain

LU2 = −
λ

T
+ µ1 − r

(
1 −

T
Tmax

)
+ β1V + β2I +

1
2
σ2

1,

LU3 = −
β1Z1

I
−
β2Z2

I
+ µ2 + qE +

1
2
σ2

2,

LU4 = −
pZ3

E
+ µ4 +

1
2
σ2

4,

LU5 = −
r1TV

Z1
+ r1 + s1,

LU6 = −
r2T I
Z2

+ r2 + s2,

LU7 = −
r3I
Z3

+ r3 + s3.

For the convenience of calculation, we simplify the following

T + I + η1V + η2E + η3Z1 + η4Z2 + η5Z3

= λ − µ1T + rT
(
1 −

T
Tmax

)
− qEI −

µ2

4
I − µ3η1V − µ4η2E − s1η3Z1 − s2η4Z2 − η6η5Z3

≤ λ + rT −
rT 2

Tmax
−
µ2

4
I − µ3η1V − µ4η2E − s1η3Z1 − s2η4Z2 − η6η5Z3,

where η6 = r3+s3
2 . Hence,

LU8 ≤ (T + I + η1V + η2E + η3Z1 + η4Z2 + η5Z3)θ
(
λ + rT −

rT 2

Tmax
−
µ2

4
I − µ3η1V

− µ4η2E − s1η3Z1 − s2η4Z2 − η6η5Z3

)
+
θ

2

(
T + I + η1V + η2E + η3Z1 + η4Z2

+ η5Z3

)θ−1 [
σ2

1T 2 + σ2
2I2 + σ2

3 (η1V)2 + σ2
4 (η2E)2

]
≤ (T + I + η1V + η2E + η3Z1 + η4Z2 + η5Z3)θ (λ + rT ) −

r
Tmax

T 2+θ −
µ2

4
I1+θ

− µ3(η1V)1+θ − µ4(η2E)1+θ − s1(η3Z1)1+θ − s2(η4Z2)1+θ − η6(η5Z3)1+θ

+
θ

2
σ2

[
T 1+θ + I1+θ + (η1V)1+θ + (η2E)1+θ

]
≤ −

r
2Tmax

T 2+θ −
µ2

8
I1+θ −

µ3

2
(η1V)1+θ −

µ4

2
(η2E)1+θ −

s1

2
(η3Z1)1+θ

−
s2

2
(η4Z2)1+θ −

η6

2
(η5Z3)1+θ + F.

See Eq (3.2) for the definition of σ2, and

F = sup
X∈R7

+

{
−

r
2Tmax

T 2+θ −
µ2

8
I1+θ −

µ3

2
(η1V)1+θ −

µ4

2
(η2E)1+θ −

s1

2
(η3Z1)1+θ

+ (T + I + η1V + η2E + η3Z1 + η4Z2 + η5Z3)θ (λ + rT )

+
θ

2
σ2

[
T 1+θ + I1+θ + (η1V)1+θ + (η2E)1+θ

] }
< ∞.
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Consequently, we summarize the above calculations and obtain

LU =M(LU1) + LU2 + LU3 + LU4 + LU5 + LU6 + LU7 + LU8

≤ − AM + (α3M + β1)V −
λ

T
−
β1Z1

I
−

pZ3

E
−

r1TV
Z1
−

r2T I
Z2
−

r3I
Z3

−
r

2Tmax
T 2+θ −

µ2

8
I1+θ −

µ3

2
(η1V)1+θ −

µ4

2
(η2E)1+θ −

s1

2
(η3Z1)1+θ

−
s2

2
(η4Z2)1+θ −

η6

2
(η5Z3)1+θ +

rT
Tmax

+ β2I + qE + F + K2.

See Eq (3.3) for the expression of K2.
Next, we construct a compact subset Dε to make LU < 1 valid. Define a bounded closed set as

below
Dε ={ε ≤ T ≤

1
ε
, ε4 ≤ I ≤

1
ε4 , ε ≤ V ≤

1
ε
, ε6 ≤ E ≤

1
ε6 , ε

3 ≤ Z1 ≤
1
ε3 ,

ε6 ≤ Z2 ≤
1
ε6 , ε

5 ≤ Z3 ≤
1
ε5 },

where ε is a sufficiently small positive constant. In set R7
+\Dε, this sufficiently small positive constant

ε satisfies the following conditions

−AM + (α3M + β1)ε + C ≤ −1, (3.4)

−
λ

ε
+ G ≤ −1, (3.5)

−
r1

ε
+ G ≤ −1, (3.6)

−
β1

ε
+ G ≤ −1, (3.7)

−
r2

ε
+ G ≤ −1, (3.8)

−
r3

ε
+ G ≤ −1, (3.9)

−
p
ε

+ G ≤ −1, (3.10)

−
µ3

4

(
η1

ε

)1+θ

+ G ≤ −1, (3.11)

−
r

4Tmaxε2+θ
+ G ≤ −1, (3.12)

−
s1

4

(
η3

ε3

)1+θ

+ G ≤ −1, (3.13)

−
µ2

16ε4(1+θ) + G ≤ −1, (3.14)

−
s2

4

(
η4

ε6

)1+θ

+ G ≤ −1, (3.15)

−
η6

4

(
η5

ε5

)1+θ

+ G ≤ −1, (3.16)

−
µ4

4

(
η2

ε6

)1+θ

+ G ≤ −1, (3.17)
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where,
G = sup

X∈R7
+

{
−

r
4Tmax

T 2+θ −
µ2

16
I1+θ −

µ3

4
(η1V)1+θ −

µ4

4
(η2E)1+θ −

s1

4
(η3Z1)1+θ

−
s2

4
(η4Z2)1+θ −

η6

4
(η5Z3)1+θ +

rT
Tmax

+ (α3M + β1)V + β2I + qE

+ F + K2

}
< ∞.

Then, we separate R7
+\Dε to fourteen domains,

D1 = {X ∈ R7
+, 0 < V < ε}, D2 = {X ∈ R7

+, 0 < T < ε},

D3 = {X ∈ R7
+, 0 < Z1 < ε

3,T ≥ ε,V ≥ ε}, D4 = {X ∈ R7
+, 0 < I < ε4,Z1 ≥ ε

3},

D5 = {X ∈ R7
+, 0 < Z2 < ε

6,T ≥ ε, I ≥ ε4}, D6 = {X ∈ R7
+, 0 < Z3 < ε

5, I ≥ ε4},

D7 = {X ∈ R7
+, 0 < E < ε6,Z3 ≥ ε

5}, D8 = {X ∈ R7
+,V >

1
ε
},

D9 = {X ∈ R7
+,T >

1
ε
}, D10 = {X ∈ R7

+,Z1 >
1
ε3 },

D11 = {X ∈ R7
+, I >

1
ε4 }, D12 = {X ∈ R7

+,Z2 >
1
ε6 },

D13 = {X ∈ R7
+,Z3 >

1
ε5 }, D14 = {X ∈ R7

+, E >
1
ε6 }.

Clearly, Dc
ε =

14⋃
i=1

D j.

Case 1. When X ∈ D1,

LU ≤ −AM + (α3M + β1)V + C ≤ −AM + (α3M + β1)ε + C.

According to (3.4), it implies that LU ≤ −1 for any X ∈ D1.
Case 2. When X ∈ D2,

LU ≤ −
λ

T
+ G ≤ −

λ

ε
+ G.

In view of (3.5), we have LU ≤ −1 for any X ∈ D2.
Case 3. When X ∈ D3,

LU ≤ −
r1TV

Z1
+ G ≤ −

r1

ε
+ G.

According to (3.6), we deduce that LU ≤ −1 for any X ∈ D3.
Case 4. When X ∈ D4,

LU ≤ −
β1Z1

I
+ G ≤ −

β1

ε
+ G.

According to (3.7), it implies that LU ≤ −1 for any X ∈ D4.
Case 5. When X ∈ D5,

LU ≤ −
r2T I
Z2

+ G ≤ −
r2

ε
+ G.

Based on (3.8), we derive that LU ≤ −1 for any X ∈ D5.
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Case 6. When X ∈ D6,

LU ≤ −
r3I
Z3

+ G ≤ −
r3

ε
+ G.

For any X ∈ D6, we obtain that LU ≤ −1 under the condition (3.9).
Case 7. When X ∈ D7,

LU ≤ −
pZ3

E
+ G ≤ −

p
ε

+ G.

By condition (3.10), we conclude that LU ≤ −1 for any X ∈ D7.
Case 8. When X ∈ D8,

LU ≤ −
µ3

4
(η1V)1+θ + G ≤ −

µ3

4

(
η1

ε

)1+θ

+ G.

It follows that LU ≤ −1 for any X ∈ D8 if condition (3.11) is satisfied.
Case 9. When X ∈ D9,

LU ≤ −
r

4Tmax
T 2+θ + G ≤ −

r
4Tmaxε2+θ

+ G.

By condition (3.12), we derive that LU ≤ −1 for all X ∈ D9.
Case 10. When X ∈ D10,

LU ≤ −
s1

4
(η3Z1)1+θ + G ≤ −

s1

4

(
η3

ε3

)1+θ

+ G.

From condition (3.13), we get that LU ≤ −1 for any X ∈ D10.
Case 11. When X ∈ D11,

LU ≤ −
µ2

16
I1+θ + G ≤ −

µ2

16ε4(1+θ) + G.

It follows that LU ≤ −1 for any X ∈ D11 if the condition (3.14) is satisfied.
Case 12. When X ∈ D12,

LU ≤ −
s2

4
(η4Z2)1+θ + G ≤ −

s2

4

(
η4

ε6

)1+θ

+ G.

In view of (3.15), we have LU ≤ −1 for any X ∈ D12.
Case 13. When X ∈ D13,

LU ≤ −
η6

4
(η5Z3)1+θ + G ≤ −

η6

4

(
η5

ε5

)1+θ

+ G.

It leads to LU ≤ −1 for any X ∈ D13 if the condition (3.16) is satisfied.
Case 14. When X ∈ D14,

LU ≤ −
µ4

4
(η2E)1+θ + G ≤ −

µ4

4

(
η2

ε6

)1+θ

+ G.
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Under the condition (3.17), we conclude that LU ≤ −1 is satisfied for any X ∈ D14.
Consequently, under the conditions (3.4)–(3.17), there exists a sufficiently small ε, such that

LU ≤ −1 for all X ∈ Dc
ε,

According to Lemma 3.1, we obtain that the solution of system (2.5) is a stationary Markov process.
This completes the proof. �

By the theory of Khasminskii [45], we derive that system (2.5) has a stationary Markov process
when the critical condition Rs

0 is greater than one. We should mention that

Rs
0 =

β1kλr1(
λ

T0
+ 1

2σ
2
1

) (
µ2 + 1

2σ
2
2

) (
µ3 + 1

2σ
2
3

)
(r1 + s1)

+
λβ2r2(

λ
T0

+ 1
2σ

2
1

) (
µ2 + 1

2σ
2
2

)
(r2 + s2)

.

I f σ1=σ2=0
==========

I f σ3=σ4=0
R0.

This means that when there is no white noises, the critical condition Rs
0 of stochastic differential

equation (2.5) is reduced to the basic reproduction number R0 of its corresponding deterministic
differential equation (2.1). The result shows that the existence of stationary Markov process in our
stochastic model is the extension of its corresponding deterministic model to the stability of the
positive equilibrium.

4. Extinction

In the course of viral infection, we are also concerned about the extinction of the virus. In this
section, we derive the sufficient conditions to ensure the extinction of HIV virus theoretically.

Denote

R̂0 =
3φ

∫ ∞
0

xµ(x)dx
σ2

2
2 ∧

(
µ3 +

σ2
3

2

)
∧

(
µ4 +

σ2
4

2

) ,
η7 =

β1

r1 + s1
, η8 =

β2

r2 + s2
,

φ =
r1η7

2η1
+ r2η8,

where,

µ(x) = Qx
−2+

2(r−µ1)

σ2
1 exp

{
−

2
σ2

1

(
λ

x
+

rx
Tmax

)}
, x ∈ (0,∞),

Q is a constant such that
∫ ∞

0
µ(x)dx = 1, and see the expression of η1 in Eq (2.6) of Section 1.

Theorem 4.1. Suppose X(t) be the solution of system (2.5) with the initial value X0 ∈ R
7
+, then the

solution X(t) of system (2.5) has the following property

lim sup
t→∞

1
t

ln
[
I(t) + 2η1V(t) + 2η2E(t) + η7Z1(t) + η8Z2(t) + η5Z3(t)

]
≤ φ

∫ ∞

0
xµ(x)dx −

1
3

[
σ2

2

2
∧

(
µ3 +

σ2
3

2

)
∧

(
µ4 +

σ2
4

2

)]
, a.s..
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In particular, if R̂0 < 1 holds, then

lim sup
t→∞

1
t

ln
[
I(t) + 2η1V(t) + 2η2E(t) + η7Z1(t) + η8Z2(t) + η5Z3(t)

]
≤

1
3

[
σ2

2

2
∧

(
µ3 +

σ2
3

2

)
∧

(
µ4 +

σ2
4

2

)] (
R̂0 − 1

)
< 0 a.s.,

and

lim
t→∞

1
t

∫ t

0
T (s)ds =

∫ ∞

0
xµ(x)dx,

lim
t→∞

I(t) = 0, lim
t→∞

V(t) = 0, lim
t→∞

E(t) = 0,

lim
t→∞

Z1(t) = 0, lim
t→∞

Z2(t) = 0, lim
t→∞

Z3(t) = 0 a.s..

It indicates that the virus can be eradicated with probability one a.s..

Proof. From the first equation of system (2.5), we obtain that

dT ≤
[
λ − µ1T + rT

(
1 −

T
Tmax

)]
dt + σ1TdB1(t).

Consider the following auxiliary equation with stochastic differential equation

dx =

[
λ − µ1x + rx

(
1 −

x
Tmax

)]
dt + σ1xdB1(t), (4.1)

Let x(t) be the solution of system (4.1) with the initial value x(0) = T (0) > 0. By Theorem 3.1 in
literature [36], we obtain that system (4.1) has the ergodic property with ergodic distribution

µ(x) = Qx
−2+

2(r−µ1)

σ2
1 exp

{
−

2
σ2

1

(
λ

x
+

rx
Tmax

)}
, x ∈ (0,∞),

where Q is a constant such that
∫ ∞

0
µ(x)dx = 1. Then, we have

lim
t→∞

1
t

∫ t

0
x(s)ds =

∫ ∞

0
xµ(x)dx, a.s.. (4.2)

By the comparison theorem of stochastic differential equation [46], we further obtain that

T (t) ≤ x(t) a.s..

Define
H(t) = I(t) + 2η1V(t) + 2η2E(t) + η7Z1(t) + η8Z2(t) + η5Z3(t),

and see Eq (2.6) for the expressions of η1, η2, η5, η7 and η8. Applying Itô’s formula, we obtain

L(ln H) =
1
H

(r1η7TV + r2η8T I − 2η1µ3V − 2η2µ4E)

−
1

2H2

[
(σ2I)2 + (2η1σ3V)2 + (2η2σ4E)2

]
.
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Notice that

r1η7TV
H

≤
r1η7

2η1
T,

r2η8T I
H

≤ r2η8T,

−
2η1µ3V

H
≤ −

µ3(2η1V)2

H2 , −
2η2µ4E

H
≤ −

µ4(2η2E)2

H2 .

Then, we have

L(ln H) ≤
(
r1η7

2η1
+ r2η8

)
T −

1
H2

[
µ3(2η1V)2 + µ4(2η2E)2

]
−

1
2H2

[
(σ2I)2 + (2η1σ3V)2 + (2η2σ4E)2

]
≤φT −

I2 + (2η1V)2 + (2η2E)2

H2

[
σ2

2

2
∧

(
µ3 +

σ2
3

2

)
∧

(
µ4 +

σ2
4

2

)]
≤φT −

1
3

[
σ2

2

2
∧

(
µ3 +

σ2
3

2

)
∧

(
µ4 +

σ2
4

2

)]
.

Applying the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) (a, b, c > 0), we get

−
I2 + (2η1V)2 + (2η2E)2

H2 ≤ −
1
3
.

We further have

d ln H(t) ≤φTdt −
1
3

[
σ2

2

2
∧

(
µ3 +

σ2
3

2

)
∧

(
µ4 +

σ2
4

2

)]
dt

+
σ2I
H

dB2(t) +
2η1σ3V

H
dB3(t) +

2η2σ4E
H

dB4(t).

For inequality (4), integrating both sides from 0 to t, and dividing by t on both sides, we obtain

ln H(t)
t
−

ln H(0)
t

≤
φ

t

∫ t

0
T (s)ds −

1
3

[
σ2

2

2
∧

(
µ3 +

σ2
3

2

)
∧

(
µ4 +

σ2
4

2

)]
dt +

σ2

t

∫ t

0

I(s)
H(s)

dB2(s)

+
2η1σ3

t

∫ t

0

V(s)
H(s)

dB3(s) +
2η2σ4

t

∫ t

0

E(s)
H(s)

dB4(s). (4.3)

Taking the superior limit on both sides of inequality (4.3) and combining with inequality (4.2), under
the critical condition R̂0 < 1, we outline that

lim sup
t→∞

1
t

ln
[
I(t) + 2η1V(t) + 2η2E(t) + η7Z1(t) + η8Z2(t) + η5Z3(t)

]
≤ φ

∫ ∞

0
xµ(x)dx −

1
3

[
σ2

2

2
∧

(
µ3 +

σ2
3

2

)
∧

(
µ4 +

σ2
4

2

)]
=

1
3

[
σ2

2

2
∧

(
µ3 +

σ2
3

2

)
∧

(
µ4 +

σ2
4

2

)] (
R̂0 − 1

)
< 0 a.s.,
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which means that

lim
t→∞

I(t) = 0, lim
t→∞

V(t) = 0, lim
t→∞

E(t) = 0

lim
t→∞

Z1(t) = 0, lim
t→∞

Z2(t) = 0, lim
t→∞

Z3(t) = 0 a.s..

This completes the proof. �

5. Numerical simulations

We have theoretically analyzed the existence of stationary Markov process and the extinction for
virus in Sections 3 and 4. In this section, in order to study the viral dynamics of a delayed HIV
stochastic model with cell-to-cell infection and CTL immune response, we carry out numerical
simulations on two aspects: (i) the influence of random fluctuations on the virions and the CTLs
populations; (ii) the effect of cell-to-cell infection and time delays on the number of target cells,
infected T-cells, virions and CTLs.

In the following, we give numerical simulations to show the effect of the random fluctuations and
the delays on the long time behavior around the positive equilibrium E∗. By employing the Milstein’s
higher order method in Higham [47], the discretization form of model (2.5) is

Tm+1 = Tm +
[
λ − µ1Tm + rTm

(
1 − Tm

Tmax

)
− β1TmVm − β2TmIm

]
∆t + σ1Tm

√
∆tξ1,m

+
σ2

1
2 Tm(∆tξ2

1,m − ∆t),

Im+1 = Im +
(
β1Z1,m + β2Z2,m − µ2Im − qEmIm

)
∆t + σ2Im

√
∆tξ2,m +

σ2
2

2 Im(∆tξ2
2,m − ∆t),

Vm+1 = Vm + (kIm − µ3Vm) ∆t + σ3Vm
√

∆tξ3,m +
σ2

3
2 Vm(∆tξ2

3,m − ∆t),

Em+1 = Em +
(
pZ3,m − µ4Em

)
∆t + σ4Em

√
∆tξ4,m +

σ2
4

2 Em(∆tξ2
4,m − ∆t),

Z1,m+1 = Z1,m +
[
r1TmVm − (r1 + s1)Z1,m

]
∆t,

Z2,m+1 = Z2,m +
[
r2TmIm − (r2 + s2)Z2,m

]
∆t,

Z3,m+1 = Z3,m +
[
r3Im − (r3 + s3)Z3,m

]
∆t,

where the time increment ∆t = 0.01 in our simulations, and ξ1,m, ξ2,m, ξ3,m and ξ4,m, m = 1, 2, · · · , n, are
the mth realization of the four independent Gaussian random variables with distribution N(0, 1).

For the weak kernels fi(τ) = rie−riτ (i = 1, 2, 3), we choose r1 = r2 = r3 = 10, s1 = s2 = 0.2,
s3 = 0.5. For the deterministic model (2.1), all the other parameter values are from Table 1. By Matlab
software, we compute that

R0 = R01 + R02 =
β1kT0r1

µ2µ3(r1 + s1)
+

β2T0r2

µ2(r2 + s2)
= 2.1437 + 2.0544 = 4.1980 > 1,

and the unique positive equilibrium E∗ = (253.2461, 3.5997, 156.5071, 6.8565). Following the
theoretical results, we know that the positive equilibrium E∗ is globally attractive.

Example 5.1 For stochastic model (2.5), in order to examine the existence of stationary Markov
process and the effect of random fluctuations on viral dynamics numerically, we choose three groups
of random noise (σ1, σ2, σ3, σ4) equal to (0.02, 0.04, 0.4, 0.02), (0.04, 0.08, 0.8, 0.04) and
(0.06, 0.12, 1.8, 0.06), respectively. The remaining parameter values of system (2.5) are shown in
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Table 1, then the critical values of Rs
0 corresponding to the three groups of noise are 2.0432, 1.3381

and 0.9653, respectively. Theorem 3.1 is satisfied for the first two groups of random noise.

Table 1. List of Parameters

Parameters Description Unit Value Source

λ Target cells source term µl−1day−1 10 [7, 8]
µ1 Death rate of healthy target cells day−1 0.1 [7, 8]
r Growth rate of T-cells day−1 0.3 [7, 8]
Tmax Carrying capacity of T-cells µl−1 1500 [7, 8]
β1 Viral infectivity rate by virus µl day−1 2.4×10−5 [7, 8]
β2 Viral infectivity rate by infected cells µl day−1 1×10−3 [17]
µ2 Death rate of infected target cells day−1 0.5 [7, 8]
k Average production rate of virus virions/cell 1000 [7, 8]
µ3 Clearance rate of virus day−1 23 [7, 8]
q CTL effectiveness µl day−1 0.1 [1, 7]
p CTL responsiveness µl day−1 0.2 [1, 7]
µ4 Death rate of CTLs day−1 0.1 [1, 7]
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Figure 1. (a) Trajectory of the virus population for stochastic model (2.5) and its
corresponding deterministic model (2.1) with three different sets of white noise. (b)
The histogram of the solution for virus population. Parameter values can be seen
in Table 1 and (σ1, σ2, σ3, σ4) equal to (0.02, 0.04, 0.4, 0.02), (0.04, 0.08, 0.8, 0.04) and
(0.06, 0.12, 1.8, 0.06), respectively.
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The numerical simulations show that the stationary Markov process occurs (see Figures 1(a) and
2(a)) and the corresponding histograms of the solution for virus population and CTLs population can
be seen in Figures 1(b) and 2(b), respectively. It is observed that, with the increase of noise intensity,
the amplitude of virus and CTLs populations becomes large, and small noise intensity may contribute
to maintain the existence of stationary Markov process even though the critical condition Rs

0 is less
than one.
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Figure 2. (a) Trajectory of the CTLs population for stochastic model (2.5) and its
corresponding deterministic model (2.1) with three different sets of white noise. (b)
The histogram of the solution for CTLs population. Parameter values can be seen
in Table 1 and (σ1, σ2, σ3, σ4) equal to (0.02, 0.04, 0.4, 0.02), (0.04, 0.08, 0.8, 0.04) and
(0.06, 0.12, 1.8, 0.06), respectively.

To further study the effect of random noises on viral dynamics, we assume that there is only one
random noise, and observe the effect of this noise on the number of virions and CTLs. From Figures 3
and 4, we find that the the smaller the noise intensity is, the smaller the fluctuation amplitude of virus
and CTLs populations number is. With the increase of the noise intensity, the fluctuation amplitude
of population increases. This indicates that the noise intensity can affect the fluctuation range of the
population.

Example 5.2 Consider model (2.5) with noise intensity (σ1, σ2, σ3, σ4)=(0.5, 1.0, 6.0, 0.5), and all
the other parameter values are the same as in Example 5.1. The critical values of Rs

0 = 0.0599 < 1.
Figure 5 shows that the big noise intensity can make the infected T-cells, virus and CTLs population
extinct, while its corresponding deterministic model (2.1) has a attractive positive equilibrium.

Example 5.3 To study the effect of the cell-to-cell infection on model behavior, we compare our
stochastic model (2.5) to the stochastic model without cell-to-cell infection. We choose
(σ1, σ2, σ3, σ4)=(0.04, 0.08, 0.8, 0.04), and all the other parameter have the same values as in Table 1.
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Figure 3. The dynamics of stochastic model (2.5) around the positive equilibrium E∗ with
only σ1 and only σ2, respectively.
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Figure 4. The dynamics of stochastic model (2.5) around the positive equilibrium E∗ with
only σ3 and only σ4, respectively.
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Figure 5. For sufficiently large noise intensity (σ1, σ2, σ3, σ4) = (0.5, 1.0, 6.0, 0.5), the virus
can be eradicated of stochastic model (2.5), while its corresponding deterministic model (2.1)
has a attractive positive equilibrium.

Following the definition of critical condition Rs
0 in stochastic model (2.5), we calculate that

Rs
01 =

β1kλr1(
λ

T0
+ 1

2σ
2
1

) (
µ2 + 1

2σ
2
2

) (
µ3 + 1

2σ
2
3

)
(r1 + s1)

= 0.6787,

Rs
02 =

λβ2r2(
λ

T0
+ 1

2σ
2
1

) (
µ2 + 1

2σ
2
2

)
(r2 + s2)

= 0.6595,

Rs
0 = Rs

01 + Rs
02 = 1.3381 > 1.

Thus, the critical condition of the stochastic model without cell-to-cell infection is 0.6787, which is less
than one. In Figure 6, we can see that the model without cell-to-cell infection could underestimate the
number of infected T-cells, virions and CTLs, and overestimate the number of healthy T-cells. Thus,
with same noise intensity, the amplitude of each population in the stochastic model without cell-to-cell
infection is smaller than that in the stochastic model with cell-to-cell infection.

To study the effect of the delays on model behavior, we compare our stochastic model (2.5) to the
stochastic model without delays. We take r1 = r2 = r3 = 8, s1 = s2 = s3 = 2 for the weak kernels (2.2),
the noise intensity (σ1, σ2, σ3, σ4)=(0.04, 0.08, 0.8, 0.04), and all the other parameter values are from
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Figure 6. For same intensity of random noise (σ1, σ2, σ3, σ4) = (0.04, 0.08, 0.8, 0.04), the
stochastic model without cell-to-cell infection may underestimate the number of infected
T-cells, virions and CTLs, and overestimate the number of target T-cells.

Table 1. By computing, for stochastic model (2.5) with distributed delays , we have

Rs
01 =

β1kλr1(
λ

T0
+ 1

2σ
2
1

) (
µ2 + 1

2σ
2
2

) (
µ3 + 1

2σ
2
3

)
(r1 + s1)

= 0.5538,

Rs
02 =

λβ2r2(
λ

T0
+ 1

2σ
2
1

) (
µ2 + 1

2σ
2
2

)
(r2 + s2)

= 0.5381,

Rs
0 = Rs

01 + Rs
02 = 1.0919 > 1;

for the stochastic model without distributed delays, we have

Rs
01 =

β1kλ(
λ

T0
+ 1

2σ
2
1

) (
µ2 + 1

2σ
2
2

) (
µ3 + 1

2σ
2
3

) = 0.6923,

Rs
02 =

λβ2(
λ

T0
+ 1

2σ
2
1

) (
µ2 + 1

2σ
2
2

) = 0.6726,

Rs
0 = Rs

01 + Rs
02 = 1.3649 > 1.

In Figure 7, we examine that the delays have no significant effect on the number of target T-cells,
infected T-cells and virus populations, except for the number of CTLs population. Thus, the stochastic
model without delays has no evident impact on the oscillation amplitude of each population.

Examples 5.1 and 5.2 reveal that the small noise intensity can keep the number of virions and CTLs
under a certain range, while the big noise intensity can lead to the extinction of the virus even though its
corresponding deterministic model has a attractive positive equilibrium. Examples 5.1 and 5.3 indicate
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Figure 7. For same intensity of random noise (σ1, σ2, σ3, σ4) = (0.04, 0.08, 0.8, 0.04), the
stochastic model without delays may overestimate the number of CTLs, but has no evident
impact on the number of target T-cells, infected T-cells and virions.

that the fluctuation amplitude of population is more sensitive to the noise intensity than the delay,
since the fluctuation amplitude of each population changes within a very narrow range with respect to
the delay (see Figure 7), and it changes within a wide range with respect to the noise intensity (see
Figures 3 and 4). Example 5.3 also demonstrate the stochastic model without cell-to-cell infection
could underestimate the number of virions and CTLs.

6. Conclusions

In this paper, white noises are used to describe the random fluctuations during HIV infection
process. We have formulated a stochastic HIV model which includes virus-to-cell infection,
cell-to-cell infection, CTL immune response and three distributed delays. For the commonly used
gamma distribution delays, we choose the weak kernels form as our study. To my knowledge, few
articles have studied the cell-to-cell infection and delays on stochastic HIV model. By transforming
the four-dimensional stochastic integro-differential equation into a degenerate seven-dimensional
stochastic differential equation, we theoretically obtain three main results: (I) The solution of the
system is unique and global. (II) By constructing suitable Lyapunov functions, we derive the
existence of stationary Markov process when the critical condition is greater than one, which implies
the persistence of the virus. (III) Sufficient conditions are given to ensure the extinction of the virus.

According to the actual parameters obtained in previous references, three main results of system
(2.5) are obtained numerically: (I) Within the scope of small noise intensity, the smaller the noise
is, the smaller the amplitude of the system solution vibration is. Small noise intensity is helpful to
keep the number of virions and CTLs fluctuating within some certain range. (II) For stochastic model,
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sufficiently large noise intensity may induce the extinction of virus population even if its corresponding
deterministic model has a stable positive equilibrium. (III) Cell-to-cell infection can affect the number
of each population, while the delay has no significant effect on the number of each population. It
indicates that random white noise is more sensitive to the dynamics on the model than the delay.

Compared with HIV stochastic model without distributed delay [33–36], stochastic model with
distributed delay can be transformed into a degenerate stochastic differential equation. As far as we
know, little work has been done on the theoretical analysis of the degenerate differential equations.
Comparing our stochastic model with the model including only one infection mode (virus-to-cell
infection or cell-to-cell infection) [33–38], we find that under the same noise intensity, the model
including only one infection mode could underestimate the number of virions and CTLs. Thus, our
study can be regard as an extension of the earlier works [33–37].
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