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Abstract: Long noncoding RNAs (lncRNA) play important roles in gene expression regulation in 

diverse biological contexts. Numerous studies have indicated that lncRNA-gene interactions are 

closely related to the occurrence and development of cancers. Thus, it is important to develop an 

effective method for the identification of target genes of lncRNA. Meanwhile, the high throughput 

sequencing data provide tremendous information about regulation correlation, by which the new 

target genes could be detected from known lncRNA regulated genes. In this study, we developed a 

method for elucidating lncRNA-gene interactions by using a biclustering approach, which allows for 

the identification of particular expression patterns across multiple datasets, indicating networks of 

lncRNA and gene interactions. A p-value strategy is followed to link co-expression patterns to certain 

lncRNAs. The method was applied on the breast cancer RNA-seq datasets along with a set of known 

lncRNA regulated genes. The evaluation indicated that the method can detect some new targets but 

fail to obtain higher coverage. We believe that this developed method will provide useful 

information for future studies on lncRNAs.   
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1. Introduction 

With the advent of technologies allowing for large-scale, high throughput data, a much clearer 

understanding of the genomic mechanisms behind gene regulation have been gained. The scientists 

found that there are unexpected far more noncoding RNAs comparing with protein-coding genes and, 

and these noncoding regions play important roles in determining the complexity observed in the 

human genome [1,2]. Within these noncoding regions, long noncoding RNAs (lncRNAs), which are 

functionally defined as noncoding regions of RNA that are at least 200 base-pairs in length, have 

attracted lots of attention. Certain lncRNAs appear to act locally, while others have more distal 

regulatory effects, even acting across multiple chromosomes [3]. Many studies have identified 

specific functions of particular lncRNAs, including embryonic mechanisms, cell cycle functions, 

innate immunity, and disease processes. However, there are still thousands of lncRNAs have no 

identified functions [1,3–6]. Some studies have been performed that produce relatively few numbers 

of lncRNA functions [7], and have shown that the function of lncRNAs is highly cell-type-specific: 

one lncRNA may inhibit particular genes in one type of cell while promoting the same gene in 

another. This phenomenon makes it even more difficult to identify lncRNA functions on a large scale. 

Due to this specificity, researchers propose that future lncRNA studies should be performed on 

specific cell types to identify particular regulatory mechanisms.  

One of the most prominent and intriguing applications of lncRNA regulatory investigation 

comes from cancer studies [8,9]. It has been shown that lncRNAs appear to have high connectivity 

with numerous diseases, especially cancer. Because of the highly cell type-specific nature of lncRNA 

regulatory functions and the irregularity of cancer cell genetic information, studying lncRNA 

regulation in specific cancer types may provide promising insight into specific genomic regulations 

of common cancer cells. In a few documented cases, specific lncRNAs have been shown to be 

significantly differentially expressed in specific cancer types, such as prostate cancer and breast 

cancer [1]. For these reasons, it seems appropriate to further investigate lncRNA-gene interactions in 

particular cancer cells. 

The wealth of gene expression datasets available provides an opportunity to computationally 

identify co-expressed gene modules(CEMs), each of which is defined as a highly structured 

expression pattern on a specific gene set [10,11]. These CEMs tend to be functionally related or 

co-regulated by the same transcriptional regulatory signals (e.g., transcription factors, lncRNA and so 

on) under a specific condition or in a particular disease cell type. Overall, successful derivation of the 

CEMs may grant a higher-level interpretation of large-scale gene expression data, improve functional 

annotation of condition-specific gene activities, facilitate inference of gene regulatory relationships, 

hence, provide a better mechanism level understanding of complex diseases.  

The computational identification of CEMs can be solved by a biclustering approach [12], which 

is a two-dimensional data mining technique that simultaneously identifies co-expressed genes under 

a subset of conditions. a high proportion of enriched biclusters on real datasets. Within this study, we 

try to identify new lncRNA-gene interactions and transcription factor-lncRNA partnerships from 

cancer RNA-seq data using a biclustering approach. The biclustering method will allow for the 

identification of particular expression patterns across multiple datasets, indicating networks of 

lncRNA and gene interactions. This developed method will also provide a framework for future 

lncRNA interaction studies. We applied this method on two sets of TCGA breast cancer RNA-seq 

data to generated CEMs based on known lncRNA-gene interactions. Then, the predicted CEMs are 
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linked to lncRNA by a statistic p-value and the new lncRNA-gene relationship are generated. The 

evaluation on the predicted results showed that the pipeline can find some target genes for given 

lncRNA, and meanwhile the performance still has some space to be improved. We further conducted 

a TF motif analysis on the predicted CEMs and provide potential regulation cooperation between 

TFs and lncRNAs. The related original data with codes, results and supplementary data can be 

downloaded on https://github.com/IvesG/sGavin.git. 

2. Materials and method 

2.1. Data collection  

Two sets of TCGA (The Cancer Genome Atlas) breast cancer RNA-seq data, one from the 

normal cell (referred as normal data) and the other from tumor cell (referred as tumor data) were 

downloaded from https://portal.gdc.cancer.gov/. The normal and tumor data consist of 113 and 1091 

samples, respectively. And of the 113 normal samples, 112 of them are from the same patient among 

the tumors. Both datasets contain 60,483 genes, among which there are 19,824 protein-coding genes 

and 7,399 long intergenic noncoding RNAs (lincRNAs) genes. The RNA-seq data are all Upper 

Quartile normalized FPKM (UQ-FPKM) values. 

A total of 1,081 experimentally validated lncRNA-associated regulatory entries were 

downloaded from LncReg [13], describing the comprehensive regulatory relationships among 258 

lncRNAs and 571 genes. All these relationships were manually collected from PubMed with focus 

on the data generated by laboratory methods, and can be categorized into up/down/active/inactive 

based on regulatory relationships or transcription/post-transcription/translation/post-translation based 

on regulatory mechanisms.  

2.2. Extract expression of target genes from RNA-seq dataset 

As we focus on lncRNA-gene interactions, the relationships downloaded from LncReg were 

filtered to retain only relationships describing genes regulated by lncRNAs with specified species 

information (constrained to Homo sapiens and Mus musculus), resulting 925 relationships in total for 

the downstream analysis, covering interactions between 309 unique human genes and 103 human 

lncRNAs, as well as between 199 mouse genes and 100 mouse lncRNAs. It is noteworthy that these 

925 relationships include 28 post-transcriptional regulations, 41 post-translational regulations, 714 

transcriptional regulations, 23 translational regulations, 1 transcriptional &translational regulation 

and 118 unspecified relationships. 

As the table from LncReg [13] only provides gene symbols, while the RNA-seq dataset uses 

Ensembl ID as gene's identifiers, we use Ensembl BioMart [14] to match gene symbols with 

Ensembl IDs for all the genes and lncRNAs. Then we got orthologous genes between mouse and 

human also using BioMart; we found orthologous human genes for all 199 mouse genes, and 38 

overlapped with original human genes. For convenience, we recorded human genes, mouse genes 

that don't overlap with human genes, human lncRNAs and mouse lncRNAs that don't overlap with 

human lncRNAs as HG, MG, HL, and ML, respectively.   

We combined the normal and tumor RNA-seq dataset together, then extracted expression values 

for all the HG, MG, HL, ML, protein-coding genes (PC, the remaining protein-coding genes except 

https://github.com/IvesG/sGavin.git
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HG and MG) and lincRNAs (linc, the remaining lincRNA except HL and ML). Taking the genes as 

rows and the conditions as columns, we obtained the RNA-seq expression matrix on which 

biclustering will be performed to detect CEMs. 

2.3. Bi-clustering analysis 

QUBIC is a biclustering analysis tool designed for co-expression analyses of genes based on 

their gene-expression patterns under multiple conditions. The software can generally identify all 

statistically significant groups, or biclusters, of genes with similar expression patterns under at least a 

specific number of experimental conditions, which tend to be more sensitive and more specific than 

other biclustering tools [15]. We use a quantile-based discretization method of QUBIC to generate a 

qualitative representing matrix for the RNA-seq expression matrix. Then we extracted the rows of 

known lncRNA regulated HG and MG from this representing matrix as seed 1 and HG, MG, HL, and 

ML rows as seed 2. Next bi-clustering analysis was performed on these two seeds to predict 

co-expressed gene modules (CEMs) in the qualitative representing matrix, respectively.  

2.4. Predict the potential lncRNA-gene interactions 

For an identified CEMs, we calculated the P-value of a bicluster enriched with genes regulated 

by a lncRNA using the hypergeometric function [16], 

             
  
 
     

   
 

  
 
 

 

where r is the number of genes in a CEMs (with size n) that regulated by certain lncRNA, N is 

the total number of known lncRNA regulated genes in the whole genome, K is the number of genes 

regulated by that lncRNA in the whole genome.  

We assumed that, if the known target genes of a given lncRNA are highly covered by a CEM 

with a significant p-value, the other genes in this CEM have high possibilities regulated by the given 

lncRNA. Thus, we used the smallest P-value for all possible lncRNAs as the p-value of the current 

bicluster and the relationships between lncRNA and genes in the bicluster are predicted. 

2.5. Validation of the prediction  

To evaluate the performance of the new methods on the prediction of new relationships between 

lncRNA and genes, we randomly separate seed2 into two parts with equal size named seedpart1 and 

seedpart2, for multiple times. Then bi-clustering analysis will be performed on seedpart2 to predict 

co-expressed gene modules (CEMs). For seedpart1 we find its part which is covered by co-expressed 

gene modules (CEMs) from seedpart2. We calculate the cover ratios by the size of seedpart1 to be 

divided by the size of the covered part by CEMs generated from seedpart2. Also, we calculate the 

p-values for the coverage rates to present the statistical significance of them. 

2.6. Motif analysis on predicted CEMs 
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We choose several significant CEMs with sizes or conditions below 100, to conducted TF motif 

analysis. The promoter regions of the corresponding genes are inputted into the sub-routine 

findMotifs.pl of Homer [17], respectively. The script findMotifs.pl can firstly search for the upstream 

promoter sequences of a certain length automatically, and then perform motif finding on the 

promoters. For each run of findMotifs.pl on the datasets, we let the program output at most 5 

top-ranking motifs, i.e. there will be up to 5 motifs discovered by findMotifs.pl for each CEMs. To 

evaluate the validity of the discovered motifs, findMotifs.pl automatically compares the similarity 

between the discovered motif profiles and the motif profiles archived in JASPAR [18] v2018 

(http://jaspar.genereg.net/) under its default parameter setting. For each discovered motif having 

similarity with at least one motif archived in JASPAR, we present its motif logo as well as the 

information of its most similar motif in JASPAR. 

3. Results 

3.1. The known interactions of genes and lncRNAs 

All the known interactions between lncRNAs and genes are showcased in Figure 1A. The 

related data can be download from https://github.com/IvesG/sGavin.git data/LncReg0419 and more 

details are written in data/readme.txt. In figure 1A, dark-blue nodes represent LncRNAs, light-blue 

nodes represent proteins, pink edges represent interactions documented in Homo, green edges 

represent interactions documented in Mus, orange edges represent interactions documented in both 

Homo and Mus. Meanwhile, there are some labels on the edges, categorized based on regulatory 

mechanisms including PTL (post-translational regulation), TC (transcriptional regulation), PTC 

(post-transcriptional regulation), TL (translational regulation), and NS (not sure). The distribution 

above is displayed in Figure 1B and nearly three fourth (714/925) of them are identified at the 

transcriptional level. Other labels on the edges are categorized based on regulatory relationships 

including down, up, active and inactive. The distribution above is displayed in Figure 1C. The down 

relationships (575) are more than up relationships (308), and the proportion of active/inactive is 

scarce (4.5%). 

Figure 1E showed the distribution of a number of genes regulated by each lncRNA. It can be 

found that most lncRNA (~78%) regulate less than 5 genes. To show the specific details of the 

number of genes regulated by each lncRNA, Figure 1D is made, each point in the Figure 1D reflect 

the number of lncRNA (horizontal coordinate) that regulate certain number of genes (longitudinal 

coordinates) e.g. the point with coordinate (4,14) in Figure 1D indicate that there are 14 lncRNA and 

each of them regulate 4 genes. The lncRNA that regulate more genes in Figure 1D belongs to the 

more concentrated parts in Figure 1(A). 
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Figure 1．Correlation Analysis of the known interactions of genes and lncRNA. (A) The 

network of known interactions between genes and lncRNA. The distribution of the 

regulatory mechanisms of the network. (C) The distribution of the regulatory 

relationships of the network, (D&E) The number of lncRNA that regulate genes in the 

scatter diagram and bar chart respectively. 

3.2. The predicted co-expressed gene modules (CEMs) 

With the quantile-based discretization method and biclustering analysis, there are some 

co-expressed gene modules (CEMs) are found. The details of the way we identify CEMs are 

showcased in Figure 2C. Figure 2A shows the number of co-expressed gene modules(CEMs) we 

have got from seed1 and seed2 processed by max(min [19])-based (QUBIC1.0, [15,20]) and 

KL-based bi-clustering analysis (QUBIC2.0 [21]) respectively. And the distributions of numbers of 
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genes and conditions for each CEM can be found in Figure 2D and Figure 2E. For instance, label 

seed1_1genes represent that Qubic1.0 is performed on seed1. To better illustrate the distributions, we 

have constrained the number of each gene and the number of each condition below 100 (in Figure 

2B). It is found that the KL-based biclustering method tends to generate CEMs that contain fewer 

genes while more conditions than max(min [22])-based biclustering method from Figure 2D and 

Figure 2E. The difference between the results (whether the distribution of genes sizes and condition 

sizes or the number of CEMs that we have predicted) we get from seed1 and seed2 is subtle.  

 

Figure 2．Correlation Analysis of the predicted co-expressed gene modules. (A) The 

number of CEMs that we have obtained. (B) The number of CEMs with size (both 

numbers of conditions and genes) constrained below 100. (C) The flow-process diagram 

describing the way we find CEMs. (D) The distribution of numbers of conditions of 

CEMs. (E) The distribution of the number of genes of CEMs. 
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3.3. Predicting potential interaction between lncRNAs and genes 

The proportion of CEMs that have significant P-values (below a pre-selected P-value cutoff) as 

well as proportions of the number of unique enriched lncRNA in each bicluster that belong to certain 

categories (i.e., number of lncRNA = 2,3 or > 3) are calculated and shown in Figure 3A and Figure 

3B. In the figures, Seed1_qubic1 represent the proportions from the results obtained using quantile 

discretization and using max(min [23])-based biclustering on seed 1, seed1_qubic2 represent using 

quantile discretization and using KL-based biclustering on seed1. In Figure 3A, it can be found that 

most CEMs have P-value more than 0.001 and seed1_qubic1 seems to have more significant P-value. 

Constrain P-value below 0.00001 and there is barely CEMs remained (less than 7%). In Figure 3B 

the majority of (more than70%) CEMs are with enriched lncRNA more than 3 and especially most 

(around 85%) of CEMs from seed1_qubic1. 

 

Figure 3. Correlation Analysis of the enriched lncRNA and P-value in CEMs. 

(A)Proportions of CEMs that significantly enriched with lncRNAs and proportions of the 

number of enriched lncRNA for seed1. (B)Proportions of CEMs that significantly 

enriched with lncRNAs and proportions of the number of enriched lncRNA for seed2.  

3.4. Performance evaluation of the pipeline 

For validation, we separated the HG + MG genes into two parts randomly and equally for 10 

times and obtained 10 cover ratios correspondingly to check the accuracy of the previously predicted 

genes. The results of our validation are calculated and shown in Table 1. From Table 1 it can be 

found that all of the cover ratios are under 25% and the average ratio is 16.25%. We further 

calculated the p-value of the coverage rates. The results indicated that even the coverage date has a 

lot of space to be improved, the statistical significance of them are acceptable. 

Table 1. Groups refer to genes that we extracted. 

Group 1 2 3 4 5 6 7 8 9 10 

Ratio 14.00% 19.60% 14.00% 15.70% 14.50% 21.30% 9.80% 24.30% 14.00% 15.30% 

P-value 7.58E-07 5.14E-14 7.58E-07 8.11E-09 2.56E-07 1.24E-16 5.37E-03 1.27E-21 7.58E-07 2.65E-08 
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3.5. TF motif analysis on CEMs 

Since lncRNA plays an important role in regulation, they should have cooperation with 

transcription factor [23,24]. Thus we conduct the analysis about the DNA binding sites of related to 

CEMs [19,22,25]. As described in the Method section, we choose five CEMs to conducted TF motif 

analysis. The corresponding gene list files each containing 3, 6, 14, 20 and 21 genes. The predicted 

motifs and the comparison between them and JASPAR motifs are listed in Table 2, along with the 

function of the target TFs. In Table 2, the second column has the name of lncRNA related with this 

CEMs and the p-value of their correlations; The third column contains the motif consensus by 

Homer; The fourth column provides TF names of the most similar motifs in JASPAR, along with the 

similarity scores in the fifth column. These TFs may have cooperation with corresponding lncRNAs. 

In the first column, all the P-value of the LncRNA from the CEM is below 0.01 and the least 

P-value is from LncRNA HOTAIR. The supplementary table S1 with more details, including and 

the logo of discovered motifs and the functions of corresponding TFs, can be downloaded by 

visiting the GitHub link.  

Table 2. Comparison between discovered motifs and JASPAR motifs. 

 
lncRNA 

(p-value) 
Homer motifs 

JASPAR 

TFs 
Scores 

1 
FOXCUT 

3.6e-3 

AACCAVTTHDCG  TFCP2 0.64 

TCCTATCACACR  MEIS2 0.62 

TTTTHAAAGGGG  CHR  0.67 

ARTGGTTGTWGA  FOXJ2 0.58 

GCAATCTCGC  IRF4 0.66 

2 
ANCR 

1.1e-3 

AGGGTGACAG  SPZ1 0.80 

GGTATCTTAC  GATA5 0.64 

CTCATAGGAG  GCM1 0.65 

TAAGTGAAAG  PRDM1 0.86 

CTTTTGGAAC  CHR  0.65 

3 
250-280 

2.2e-4 

WYTRTCTTTGCG  RXR  0.61 

TCTTACGG  ELK1 0.71 

GGCAAGGA  SD  0.76 

GAGGTATGTT  TEAD1 0.70 

TGCCGGGAGCGT  POL  0.64 

4 
HOXD-AS1 

6.1e-3 

CTCGAGTAGG  PB0114 0.63 

GCCCCCTGCA  PB0076 0.74 

ACGYMYATKYCC  GFY  0.59 

AGCGGGTT  PH  0.68 

AGGCGCCGCGCC  SP1 0.69 

5 
HOTAIR 

5e-6 

TGGCGCAGCGCG  PB  0.67 

GTACAACTTT  PB  0.66 

CMTSTGTCWCYK  NeuroG2 0.66 

GTGATCCATT  RHOXF1 0.68 

GGTMGRRGTGMW  TBX20 0.58 
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Table 3. Gene ontology information of selected CEMs. 

LncRNA ID Description q-value 

FOXCUT 

GO:0033613 transmembrane receptor protein tyrosine kinase activity 1.2937E-02 

GO:0033613 activating transcription factor binding 1.2937E-02 

GO:0019199 transmembrane receptor protein kinase activity 1.2937E-02 

GO:0001085 RNA polymerase II transcription factor binding 2.0767E-02 

250-280 

GO:0003735 structural constituent of ribosome 3.1600E-06 

GO:0003729 mRNA binding 1.1140E-03 

GO:0008483 transaminase activity 1.1140E-03 

GO:0048027 mRNA 5'-UTR binding 1.1140E-03 

GO:0016769 transferase activity, transferring nitrogenous groups 1.1140E-03 

GO:0045182 translation regulator activity 1.5826E-03 

GO:0030170 pyridoxal phosphate binding 1.5826E-03 

GO:0070279 vitamin B6 binding 1.5826E-03 

GO:0019843 rRNA binding 1.5826E-03 

GO:0019842 vitamin binding 3.1903E-03 

HOXD-AS1 

GO:0004714 transmembrane receptor protein tyrosine kinase activity 1.2937E-02 

GO:0033613 activating transcription factor binding 1.2937E-02 

GO:0019199 transmembrane receptor protein kinase activity 1.2937E-02 

GO:0001085 RNA polymerase II transcription factor binding 2.0767E-02 

HOTAIR 

GO:0005109 frizzled binding 1.9097E-03 

GO:0001227 
transcriptional repressor activity, RNA polymerase II 

transcription regulatory region sequence-specific binding 
1.9097E-03 

GO:0001664 G-protein coupled receptor binding 1.9686E-03 

GO:0001078 
transcriptional repressor activity, RNA polymerase II core 

promoter proximal region sequence-specific binding 
1.1196E-02 

GO:0008201 heparin binding 1.2885E-02 

GO:0005539 glycosaminoglycan binding 1.8790E-02 

GO:1901681 sulfur compound binding 1.9016E-02 

GO:0045236 CXCR chemokine receptor binding 2.1785E-02 

GO:0008301 DNA binding, bending 2.1785E-02 

GO:0001223 transcription coactivator binding 2.1785E-02 

GO:0042813 Wnt-activated receptor activity 2.1785E-02 

GO:0035198 miRNA binding 2.2807E-02 

GO:0017147 Wnt-protein binding 2.5258E-02 

GO:1990841 promoter-specific chromatin binding 2.5258E-02 

GO:0000982 
transcription factor activity, RNA polymerase II core 

promoter proximal region sequence-specific binding 
2.5258E-02 

GO:0001221 transcription cofactor binding 2.5587E-02 
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Table 4. KEGG pathway information of selected CEMs. 

LncRNA ID Description q-value 

FOXCUT 

hsa05216 Thyroid cancer 8.8587E-03 

hsa04510 Focal adhesion 8.8587E-03 

hsa05205 Proteoglycans in cancer 8.8587E-03 

hsa05218 Melanoma 1.7683E-02 

hsa05214 Glioma 1.7683E-02 

hsa04151 PI3K-Akt signaling pathway 1.8745E-02 

hsa05215 Prostate cancer 1.8745E-02 

hsa01522 Endocrine resistance 1.8745E-02 

hsa04919 Thyroid hormone signaling pathway 2.2317E-02 

hsa04152 AMPK signaling pathway 2.2317E-02 

hsa04068 FoxO signaling pathway 2.4442E-02 

hsa04550 Signaling pathways regulating pluripotency of stem cells 2.5129E-02 

hsa05224 Breast cancer 2.5129E-02 

hsa04218 Cellular senescence 2.7471E-02 

hsa05225 Hepatocellular carcinoma 2.7471E-02 

hsa04530 Tight junction 2.7471E-02 

250-280 

hsa03010 Ribosome 2.9900E-05 

hsa01210 2-Oxocarboxylic acid metabolism 3.7322E-03 

hsa00220 Arginine biosynthesis 3.7322E-03 

hsa00250 Alanine, aspartate and glutamate metabolism 4.7849E-03 

hsa01230 Biosynthesis of amino acids 7.9156E-03 

HOXD-AS1 

hsa05216 Thyroid cancer 8.8587E-03 

hsa04510 Focal adhesion 8.8587E-03 

hsa05205 Proteoglycans in cancer 8.8587E-03 

hsa05218 Melanoma 1.7683E-02 

hsa05214 Glioma 1.7683E-02 

hsa04151 PI3K-Akt signaling pathway 1.8745E-02 

hsa05215 Prostate cancer 1.8745E-02 

hsa01522 Endocrine resistance 1.8745E-02 

hsa04919 Thyroid hormone signaling pathway 2.2317E-02 

hsa04152 AMPK signaling pathway 2.2317E-02 

hsa04068 FoxO signaling pathway 2.4442E-02 

hsa04550 Signaling pathways regulating pluripotency of stem cells 2.5129E-02 

hsa05224 Breast cancer 2.5506E-02 

hsa04218 Cellular senescence 2.7471E-02 

hsa05225 Hepatocellular carcinoma 2.7471E-02 

hsa04530 Tight junction 2.7471E-02 

HOTAIR hsa04310 Wnt signaling pathway 5.7295E-03 
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3.6. Gene ontology terms and KEGG pathway information of selected CEMs 

In order to further evaluate the biological significance of the identified CEMs, we tested the 

enrichment of the genes in each CEM in Gene ontology terms and KEGG pathways using 

clusterProfiler package of R project BioConductor under  -value cutoff 0.05, of which the 

description of the GO terms and KEGG pathways that the CEMs are enriched in are presented in 

Table 3 and Table 4 respectively. And the supplementary table S2 with more details, including 

original and adjusted P-value, proportion of the matched genes, gene’s ID, etc., can be downloaded 

on GitHub link.  

4. Discussion 

Within this study, we have developed a method for elucidating lncRNA-gene and transcription 

factor-lncRNA interactions using a biclustering approach. The method was performed on 2 breast 

cancer RNA-seq datasets from TCGA. The bicluster method allows for the identification of 

particular expression patterns across multiple datasets, indicating networks of lncRNA and gene 

interactions. The developed method will also provide a way for future lncRNA interaction studies. 

Certainly, the predict performance still far from satisfactory, which is not unexpected since we only 

used RNA-Seq data. Actually, the interaction mechanism between lncRNA and genes are far more 

complex, and more data should be involved if we want to capture the whole picture of them. We are 

planning to include some other data, like proteomics and chromatin accessibility information, to 

improve the prediction. Besides, the evaluation on the relationship between lncRNA and predicted 

CEMs also has the potential to be improved, e.g. calculating the adjusted P-value or overall P-value 

in place of the original P-values used in this study. In view of the application, we will work on more 

specific examples of the regulatory functions of some particular lncRNAs and identify some 

hypothesized mechanisms of these regulatory functions. Also, the further analysis of the difference 

of lncRNA related genes between tumor and normal samples could provide more information for 

studying the process and mechanism of cancer occurrence and development, e.g. determination of 

the stage of developed tumors, which will be our concern in the future research.  
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